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Abstract
In the many-core era, the performance of MPI collectives is
more dependent on the intra-node communication compo-
nent. However, the communication algorithms generally in-
herit from the inter-node version and ignore the cache com-
plexity. We propose cache-oblivious algorithms for MPI all-
to-all operations, in which data blocks are copied into the
receive buffers in Morton order to exploit data locality. Ex-
perimental results on different many-core architectures show
that our cache-oblivious implementations significantly out-
perform the naive implementations based on shared heap and
the highly optimized MPI libraries.

Keywords cache-oblivious algorithms, MPI Alltoall, many-
core

1. Introduction
Many-core architectures tend to come with massive intra-
node parallelism, deep memory hierarchies, and complex
Networks-on-Chip (NoC). The Message Passing Interface
(MPI) [5] is used ubiquitously for communication in para-
llel applications. The performance of MPI collective com-
munications, which often determines the scalability of appli-
cations, becomes increasingly dependent on the intra-node
component. Intra-node communication is essentially cache
line transfer on the NoC. Thus, it is imperative to design
algorithms for collective communications with high cache
efficiency.

However, designing optimal communication algorithm in
terms of cache efficiency is non-trivial. There are two ma-
jor challenges. Firstly, traditional algorithms for MPI collec-
tives [6] mainly focus on reducing the latency and bandwidth
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overhead over the network, but ignore the cache complexity.
The second challenge comes from the diversity of the many-
core architectures: processors may have different memory
hierarchies, such as a two-level cache for Intel R© Xeon PhiTM

KNC or a three-level cache for Intel R© Xeon R© E7; further-
more, there are various arrangements of main memory, in-
cluding Uniform Memory Access (UMA) or Non-Uniform
Memory Access (NUMA).

Cache-oblivious algorithms [1] are asymptotically opti-
mal in terms of cache complexity without considering any
hardware parameters. Thus, these algorithms enable portable
performance on different architectures. To carry these bene-
fits towards implementations of MPI collectives, we propose
cache-oblivious algorithms for MPI all-to-all style opera-
tions. The key idea is to arrange the order of transferring the
send buffers to the corresponding receive buffers in Morton
order [4]. We also demonstrate the performance advantages
of our cache-oblivious algorithms on different many-core ar-
chitectures.

2. Cache-Oblivious Algorithms for All-to-All
Operations

We design the algorithms for intra-node collectives based on
a shared heap. The technique of creating a globally shared
heap for all MPI processes has been discussed in our previ-
ous work [2, 3]. All the send and receive buffers are allocated
in a shared heap. Then, each process can directly access all
the send and receive buffers, which enables more opportuni-
ties to exploit the data locality, and design cache-oblivious
algorithms.

For MPI Alltoall, also known as all-to-all personalized
exchange, every process sends a distinct data block to every
other process. Each process can view all the send buffers as
a 2D matrix, of which each dimension is equal to the number
of processes and each element represents a data block; and
so do the receive buffers. We name these two matrices as
’send-buffer matrix’ and ’recv-buffer matrix’, respectively.
In a naive implementation of MPI Alltoall, each process
copies a column of the send-buffer matrix into its receive
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buffer (i.e., a row of the recv-buffer matrix). The access to
the send-buffer matrix exhibits poor spatial locality because
of the row-major property of the matrix. To have good spatial
locality for both send-buffer and recv-buffer matrices, we
use Morton order [4] (also known as Z-order) to guide the
copying of data blocks into recv-buffer matrix. Figure 1
shows MPI Alltoall with 8 processes based on Morton order.
The Z-shaped curve is equally divided into 8 segments and
each one is handled by a process. Following the Z-shaped
curve, the spatial locality of MPI Alltoall is exploited.
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Figure 1. MPI Alltoall with 8 processes based on Morton
order.

For MPI Allgather, also known as all-to-all broadcast,
each process sends the same data block to all other pro-
cesses. Each process can view all the send buffers as a vec-
tor (we call it “send-buffer vector”) and the receive buffers
as a matrix (we call it “recv-buffer matrix”). In a naive
implementation of MPI Allgather, each process copies the
send-buffer vector into its receive buffer (a row of the recv-
buffer matrix), which exhibits poor temporal locality. As for
MPI Allgather, we use Morton order to guide the copying
of data blocks from send-buffer vector into recv-buffer ma-
trix. In this way, the temporal locality of send-buffer vector
is exploited.
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Figure 2. Latency comparison of MPI Alltoall between tra-
ditional MPI, naive shared heap, and the cache-oblivious im-
plementation on Intel Xeon Phi.

Preliminary experiments are conducted on Intel Xeon
Phi KNC 5110P and Intel Xeon E7-8890 v3. Xeon Phi is

a UMA architecture with 60 cores. Xeon E7-8890 is a
NUMA architecture with 72 cores. Figure 2 presents the
latencies of MPI Alltoall with different block sizes on Xeon
Phi. On Xeon Phi, our cache-oblivious implementation for
MPI Alltoall outperforms the naive implementation based
on shared heap by 40% on average when the block size is
less than 16 KB, and outperforms MPICH3 by 211% on av-
erage over all the block sizes. On Xeon E7-8890, our cache-
oblivious implementation for MPI Alltoall also has signifi-
cant performance advantage. These demonstrate that our
cache-oblivious algorithms achieve portable performance
improvement on different architectures.

3. Conclusion
As supercomputers evolve into exascale, data movement
is growingly expensive. We propose cache-oblivious algo-
rithms for MPI all-to-all style collectives to exploit data lo-
cality. Experimental results show that our cache-oblivious
algorithms achieve portable performance improvement on
both UMA and NUMA architectures. Architecture trends
indicate massive intra-node cores and deep memory hierar-
chies will be necessary to reduce power consumption and
contention on buses. We foresee that the benefit of our cache-
oblivious algorithms will be more significant on such future
machines.
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