
YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

Journal of Parallel and Distributed Computing xxx (xxxx) xxx

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

WP-SGD:Weighted parallel SGD for distributed unbalanced-workload
training system
Cheng Daning a,b, Li Shigang a,c,∗, Zhang Yunquan a

a SKL of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, China
b University of Chinese Academy of Sciences, China
c Department of Computer Science, ETH Zurich, Switzerland

a r t i c l e i n f o

Article history:
Received 27 June 2017
Received in revised form 8 April 2020
Accepted 14 June 2020
Available online xxxx

Keywords:
SGD
Unbalanced workload
SimuParallel SGD
Distributed system

a b s t r a c t

Stochastic gradient descent (SGD) is a popular stochastic optimization method in machine learning.
Traditional parallel SGD algorithms, e.g., SimuParallel SGD (Zinkevich, 2010), often require all nodes to
have the same performance or to consume equal quantities of data. However, these requirements are
difficult to satisfy when the parallel SGD algorithms run in a heterogeneous computing environment;
low-performance nodes will exert a negative influence on the final result. In this paper, we propose
an algorithm called weighted parallel SGD (WP-SGD). WP-SGD combines weighted model parameters
from different nodes in the system to produce the final output. WP-SGD makes use of the reduction in
standard deviation to compensate for the loss from the inconsistency in performance of nodes in the
cluster, which means that WP-SGD does not require that all nodes consume equal quantities of data.
We also propose the methods of running two other parallel SGD algorithms combined with WP-SGD in
a heterogeneous environment. The experimental results show that WP-SGD significantly outperforms
the traditional parallel SGD algorithms on distributed training systems with an unbalanced workload.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction1

The training process in machine learning can essentially be
treated as the solving of the stochastic optimization problem.
The objective functions are the mathematical expectation of loss
functions, which contain a random variable. The random vari-
ables satisfy a known distribution. The machine learning training
process can be formalized as

min E[g(X, w)](X ∼ certain distribution D)

= min
∫
Ω

g(x, w)density(x)∆x (1)

where g(·) is the loss function, w is the variables, X is the random2

variable, and density(·) is the probability density function of the3

distribution D.4

Because some distributions cannot be presented in the form
of a formula, we use the frequency to approximate the product
of probability density density(x) and ∆x, as a frequency histogram
can roughly estimate the curve of a probability density function.
Thus, for a dataset, the above formula can be written in the

∗ Corresponding author at: Department of Computer Science, ETH Zurich,
Switzerland.

E-mail addresses: chengdaning@ict.ac.cn (D. Cheng),
shigangli.cs@gmail.com (S. Li), zyq@ict.ac.cn (Y. Zhang).

following form:

min E[g(X, w)](X ∼ certain distribution D) ≈ min
1
m

m∑
i=1

g(xi, w)

(2)

where m is the number of samples in the dataset, and xi is the ith 5

sample value. 6

Stochastic gradient descent (SGD) is designed for the following 7

minimization problem: 8

min c(w) =
1
m

m∑
i=1

c i(w) (3) 9

where m is the number of samples in the dataset, and c i : ℓ2 ↦→ 10

[0,∞] is a convex loss function indexed by i with the model 11

parameters w ∈ Rd. Normally, in the case of regularized risk 12

minimization, c i(w) is represented by the following formula: 13

c i(w) =
λ

2
∥w∥

2
+ L(xi, yi, wT xi) (4) 14

where L(·) is a convex function in w · x. It is of note that in 15

the analysis and proof, we treat model parameters, i.e., w, as the 16

random variable during the training process. 17

When L(xi, yi, w · xi) is not a strongly convex function, for ex- 18

ample a hinge loss, the regularized term would usually guarantee 19

the strongly convexity for c i(w). 20

https://doi.org/10.1016/j.jpdc.2020.06.011
0743-7315/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2020.06.011
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:chengdaning@ict.ac.cn
mailto:shigangli.cs@gmail.com
mailto:zyq@ict.ac.cn
https://doi.org/10.1016/j.jpdc.2020.06.011

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 3

Fig. 1. Working pattern of WP-SGD when the quantities of data differ.

The iteration step for sequential SGD is1

wn = wn−1 − η∂wc i(wn−1) (5)2

Because of its ability to solve machine learning training prob-3

lems, its small memory footprint, and its robustness against noise,4

SGD is currently one of the most popular topics [3,6,8,10,17–19].5

As SGD was increasingly run in parallel computing environ-6

ments [1,13], parallel SGD algorithms were developed7

[11,29]. However, heterogeneous parallel computing devices, such8

as GPUs and CPUs or different types of CPU, have different per-9

formance. The cluster may contain nodes having different com-10

puting performance. At the same time, parallel SGD algorithms11

suffer from performance inconsistency among the nodes [11].12

Therefore, it is necessary to tolerate a higher error rate or to13

use more time when running parallel SGD algorithms on an14

unbalanced-workload system.15

Input: Examples {c1, . . . , cm}, learning rate η, k nodes in
system;

Output: v
1 Randomly partition the examples;
2 for all i ∈ {1, . . . , k} parallel do
3 Randomly shuffle the data on machine i;
4 Initialize wi,0 = 0;
5 Define the fastest nodes consuming t samples;
6 Define the delay between the fastest node and the ith

node as Ti;
7 for all n ∈ {1, . . . , t − Ti} do
8 Get the nth example on the ith node, c i,n;
9 wi,n = wi,n−1 − η∂wc i,n(wi,n−1);

10 end
11 Based on training process, setting parameter r;
12 Compute qr,i:

qr,i =
rTi∑k
j=1 r

Tj
(6)

13 end

14 Aggregate from all nodes v =

k∑
i=1

qr,i · wi,t ;

15 Return v;
Algorithm 1: WP-SGD

In this paper, we propose the following weighted parallel SGD16

(WP-SGD) for a distributed training system with an unbalanced17

workload. WP-SGD is given as Algorithm 1. WP-SGD adjusts the18

Fig. 2. Working pattern of SimuParallel SGD with equal quantities of data.

weights of model parameters from each node according to the 19

quantity of data consumed by that node. The working pattern of 20

WP-SGD is illustrated in Fig. 1. 21

In WP-SGD, r ≤ (1−λη) and r is a parameter which is decided 22

during the training process,1 η is the learning rate and λ is the 23

regularization parameter. We determine the value of the r via 24

experience, data fitting, or analysis of training data and L(·). When 25

L(·) is not a strongly convex function, r is close to the 1 − λη. 26

WP-SGD is based on SimuParallel SGD [29], which is shown 27

as Algorithm 2. The working pattern of SimuParallel SGD is illus- 28

trated in Fig. 2. 29

Input: Examples {c1, . . . , cm}, learning rate η, k nodes in
system;

Output: v
1 Randomly partition the examples;
2 for all i ∈ {1, . . . , k} parallel do
3 Randomly shuffle the data on machine i;
4 Initialize wi,0 = 0;
5 All nodes consume t samples;
6 for all n ∈ {1, . . . , t} do
7 Get the nth example on the ith node, c i,n;
8 wi,n = wi,n−1 − η∂wc i,n(wi,n−1);
9 end

10 end

11 Aggregate from all nodes v =

k∑
i=1

1
k · wi,t ;

12 Return v;
Algorithm 2: SimuParallel SGD

The main bottleneck for SimuParallel SGD in the heteroge- 30

neous parallel computing environment is that we need to guaran- 31

tee that all nodes have trained on equal quantities of data before 32

we average them (Line 5 and Line 11, respectively, in Algorithm 33

2). This requirement leads to a degradation in performance on 34

the heterogeneous cluster. WP-SGD uses a weighted average op- 35

eration to break this bottleneck. WP-SGD does not require all 36

nodes to be trained on equal quantities of data and incorporates 37

the delay information into the weights (Line 5, Line 6, and Line 38

12 with Eq. 6), which allows WP-SGD to run efficiently in a 39

heterogeneous parallel computing environment. 40

WP-SGD suggests that when the workload is unbalanced 41

within the cluster and there is a delay between the fastest node 42

and the ith node, the weight of the model parameters on the ith 43

node should be decreased exponentially. 44

1 r is the contracting map rate for the SGD framework, which we will give
its explanation in following parts.

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

4 D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

The upper bound of the objective function value calculated by1

the output of WP-SGD will be less than the upper bound of the2

objective function value of the output from sequential SGD in the3

fastest node, when solving problems with more variance (smaller4

regularization constant) [29], and the system parameters satisfy5

Eq. (7).6

2
k∑

i=1

rTi >
√
k + k (7)7

where k is the number of nodes in this system.8

What is more, WP-SGD is able to combine traditional syn-9

chronous parallel SGD algorithm, i.e., mini-batch SGD, and asyn-10

chronous parallel SGD algorithm, i.e., delay SGD.11

A numerical experiment on data from KDD Cup 2010 [26] and12

Real-sim dataset show the following conclusion:13

1. The final output of WP-SGD with an unbalanced workload14

can be nearly equivalent to the output from a system with a15

perfectly balanced workload with the best performance nodes.16

In a workload-unbalanced environment, WP-SGD uses less time17

than workload-balanced SGD.18

2. For inappropriate algorithms or synchronous algorithms19

on the unbalanced workload system, parallel technology brings20

negative effects.21

3. Combining with WP-SGD, traditional synchronous algo-22

rithms overcome the system’s workload unbalanced problems.23

The key contributions of this paper are as follows:24

1. We propose a novel parallel SGD algorithm, WP-SGD, for a25

distributed training system with unbalanced workloads.26

2. We prove that WP-SGD can tolerate a large delay between27

different nodes. WP-SGD suggests that when there is an increase28

in the delay between the fastest node and the ith node, the weight29

of the model parameters for the ith node should be decreased30

exponentially.31

3. We provide the results of experiments which we conducted32

using real-world data to demonstrate the advantages of WP-SGD33

on computing environment with unbalanced workloads.34

In the next section, we present related works. In Section 335

we present a basic view of traditional parallel SGD algorithms.36

In Section 4, we demonstrate the analysis and proof for WP-37

SGD. In Section 5, we theoretically offer some complementary38

technologies based on WP-SGD. In Section 6, we present the39

results of the numerical experiments.40

2. Related work41

SGD dates back to early work by Robbins and Monro et al.42

[2,17]. In recent years, combined with the GPU [1,13], parallel43

SGD algorithms have become one of the most powerful weapon44

for solving machine learning training problems [8,9,14]. Parallel45

SGD algorithms can be roughly classified into two categories,46

which we call delay SGD algorithms and model average SGD47

algorithms.48

Delay SGD algorithms first appeared in Langford et al.’s work49

[14]. In a delay SGD algorithm, current model parameters add the50

gradient of older model parameters in τ iterations (τ is a random51

number where τ < τmax, in which τmax is a constant). The iteration52

step for delay SGD algorithms is53

wn = wn−1 − η∂wc i(wn−τ) (8)54

In the Hogwild! algorithm [11], under some restrictions, parallel55

SGD can be implemented in a lock-free style, which is robust to56

noise [4]. However, these methods lead to the consequence that57

the convergence speed will be decreased by o(τ 2). To ensure the58

delay is limited, communication overhead is unavoidable, which59

hurts performance. The trade-off in delay SGD is between delay,60

degree of parallelism, and system efficiency:61

1. Low-lag SGD algorithms use fewer iteration steps to reach 62

the minimum of the objective function. However, these algo- 63

rithms limit the number of workers and require a barrier, which 64

is a burden when engineering the system. 65

2. Lock-free method is efficient for engineering the system, but 66

the convergence speed, which depends on the maximum lag, i.e. τ 67

in Eq. (8), is slow. 68

3. The lower limit of the delay is the maximum number of 69

workers the system can have. 70

From the point of view of engineering implementation, the 71

implementation of delay SGD algorithms is accomplished with a 72

parameter server. Popular parameter server frameworks include 73

ps-lite in MXNet [5], TensorFlow [1], and Petuum [24]. A method 74

that constricts the delay was offered by Ho et al. [12]. However, if 75

the workers in the parameter server have different performance, 76

τ is increased, causing convergence speed to be reduced. 77

Delay SGD algorithms can be considered as an accelerated ver- 78

sion of sequential SGD. Model average SGD algorithms accelerate 79

SGD via the averaging of model parameters. Zinkevich et al. [29] 80

proposed SimuParallel SGD, which has almost no communication 81

overhead. Y. Zhang et al. [28] gave an insightful analysis and proof 82

for this parallel algorithm. However, these methods do not take 83

into account the heterogeneous computing environment. J. Zhang 84

et al. [28] also point out the invalidity of SimuParallel SGD. In 85

fact, the effect of a model average SGD depends primarily on 86

how large the model parameters’ relative standard deviation is, 87

which means it is a trade-off between the parallelism and the 88

applicability for dataset. 89

From the point of view of engineering implementation, model 90

average SGD algorithms can be implemented in a MapReduce 91

manner [7]. Thus, most of them are running on platforms like 92

Hadoop [22]. If the nodes in the cluster have different perfor- 93

mance, the slowest node is the performance bottleneck. 94

In HPC & AI area, model average SGD algorithm and its variant, 95

batch SGD and decentralized SGD, are the most important paral- 96

lel and distributed SGD algorithm [15,21,23,25]. However, those 97

algorithms often require all nodes to have the same performance 98

or to consume equal quantities of data. Thus, unbalanced work- 99

load is the key performance bottleneck for model average SGD 100

algorithm on HPC. What is more, with the development of het- 101

erogeneous parallel computing devices, heterogeneous parallel 102

computing cluster is the main stream high performance comput- 103

ing cluster style. The cluster may contain nodes having differ- 104

ent computing performance. Heterogeneous parallel computing 105

cluster exacerbates unbalanced workload problem. 106

Above parallel SGD algorithms have various superb features. 107

However, all of them lack robustness against an unbalanced 108

workload. 109

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 5

3. Background and main idea1

3.1. Notation and definitions2

Notation Definition
t The number of samples consumed by the

fastest nodes
Ti The delay between the fastest nodes and

the ith node.Here we define the delay as
the gap of the number of data samples
between the fast nodes and node i.

xj The jth sample value
yj The label for the jth sample
λ The parameter for the regularization term.

For some loss functions, such as hinge loss,
it guarantees strongly convexity.

η Step length or learning rate for SGD
w Variables for objective function. In machine

learning, it is the model parameters.
X The random variable
m The number of samples in the dataset
c(·) Loss function
qr,i In WP-SGD, the weight for the ith node on

contracting map rate r
L(xj, yj, w · xj) The loss function without a regularization

term
D The distribution for the random variables
k The total number of nodes in a cluster
r The contracting map rate for c(w) in SGD
τ In delay SGD, the delay between the

current model parameters and the older
model parameters when current model
updates itself by the information of the
older model parameters.

τmax Maximum number of τ
D∗
η The distribution of the unique fixed point

in SimuParallel SGD and WP-SGD, with
learning rate η

Dt
η The distribution of the stochastic gradient

descent update after t updates, i.e., M i,t−Ti ,
with learning rate η.

M i,t−Ti A random variable whose PDF is Dt
η . The

output of the ith node after t − Ti iterations.
M#,t A random variable. The output of WP-SGD,

where the fastest node trained on t
samples

D#,t
η The distribution of M#,t

Wz(X, Y) Wasserstein distance between two
distributions X, Y

s In more average operation SimuParallel
SGD and WP-SGD, which are offered at
Section 5, the span between two average
operations from the view of the fastest
nodes

v The final output of an algorithm
µX The mean of the random variable X
σX The standard deviation of the random

variable X
d(·, ·) Euclidean distance.

3

We collect our common notations and definitions in this sub-4

section.5

Definition 1 (Lipschitz Continuity). A function f : X ↦→ R is6

Lipschitz continuous with constant C with respect to a distance,7

in this paper, we use Euclidean distance, d if |f (x) − f (y)| ≤ 8

Cd(x, y) for all x, y ∈ X . 9

Definition 2 (Lipschitz Seminorm). Luxburg and Bousquet [16] 10

introduced a seminorm. With minor modification, we use 11

∥f ∥Lip = inf{C : |f (x) − f (y)| ≤ Cd(x, y) for all x, y ∈ X } (9) 12

That is, ∥f ∥Lip is the smallest constant for which Lipschitz conti- 13

nuity holds. 14

In the following, we let
L(x, y, y′)

Lip ≤ G as a function of y′

15

for all occurring data (x, y) ∈ X ×Y and for all values of w within 16

a suitably chosen (often compact) domain. G is a constant. 17

Definition 3 (Contracting Map). d(·, ·) is Euclidean distance, for a 18

map f , and exists a point x∗, if 19

d(f (x), x∗) < rd(x, x∗) (10) 20

holds for all x in domain and r < 1. We name f as contracting 21

map, x∗ is the fixed point and r is contracting map rate. 22

Definition 4 (Relative Standard Deviation of X with respect to a). 23

σ a
X =

√
E(X − a)2 (11) 24

As we can see, σX = σ
µX
X , where µX is the mean of X . 25

Supertabular 3.1 shows the notations used in this paper and 26

the corresponding definitions. 27

3.2. Introduction to SGD theory 28

The core proof idea of SGD’s proof in paper [29] is that with 29

the process of SGD, the PDF of model parameters will converge 30

into a fixed PDF. Thus, all discussions about the change in the 31

training process are about random variables. When we draw 32

a specific realization about model parameters , i.e., a specific 33

machine learning model at t iteration, from model parameters’ 34

PDF, it is an independent process. 35

Theorem 1, Theorem 2, Theorem 3, and Lemma 1 are key 36

theorems we will use. All four theorems are proved by Zinkevich 37

et al. [29]. 38

Theorem 1 ([29, Theorem 11]). Given a cost function c that ∥c∥Lip
and ∥∇c∥Lip are bounded, and a distribution D such that σD is
bounded, then for any point p

Ep∈D[c(p)] − min
w

c(w) ≤

σ
p
D

√
2∥∇c∥Lip(c(p) − min

w
(w))

+ (∥∇c∥Lip(σ
p
D)

2
/2) + (c(p) − min

w
c(w)) (12)

Theorem 1 highlights the relationship between the distribu- 39

tion of model parameters and min
w∈Rd

c(w), which is the expected 40

result of SGD when p is equal to w. 41

Theorem 2 ([29, Theorem 9]). 42

c(Ew∈D∗
η
[w]) − minw∈Rdc(w) ≤ 2ηG2 (13) 43

where D∗
η is the distribution of a unique fixed point in SimuParallel 44

SGD. This theorem provides an idea of the bound on the third part 45

of Theorem 1. 46

Lemma 1 ([29, Lemma 30]). 47

σ c
X ≤ σ c′

X + d(c, c ′) (14) 48

where d(·, ·) is the Euclidean distance. 49

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

6 D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

Theorem 3 ([29, Theorem 70]). If Dt
η is the distribution of the1

stochastic gradient descent update after t iterations, then2

d(µDt
η,
µD∗

η
) ≤

G
λ
(1 − ηλ)t (15)3

4

σDt
η

≤
2
√
ηG

√
λ

+
G
λ
(1 − ηλ)t (16)5

The above theorems describe how and why SGD can converge6

to a minimum. The difference between the value of c(·) using the7

outputw from SGD and the minimum of c(·) is controlled by three8

factors:9

(1) The difference between the expectation of the current10

distribution of model parameters and the expectation of D∗
η11

(2) The standard deviation of the distribution of the current12

model parameters, which is σ
Dt
η

13

(3) The difference between the expected value of c(w) when14

w satisfies distribution D∗
η and the minimum value of c(·)15

For the sequential SGD, carrying out the algorithm would re-16

duce the first part and the second part. The third part is controlled17

by η and L(·).18

For SimuParallel SGD, the first part and the third part are19

the same for different nodes. However, σ
Dt
η
can benefit from the20

averaging operation. SimuParallel SGD uses the gain in the stan-21

dard deviation to reduce the number of iteration steps needed to22

reduce the first and second parts. In other words, SimuParallel23

SGD accelerates SGD.24

4. Proof and analysis25

4.1. Analysis of WP-SGD26

The concept of WP-SGD has two main aspects:27

1. Our proposed weight is to compensate for the main loss28

from the delay between the different nodes. The main loss from29

the delay is controlled by the exponential term (1 − λη)t .30

2. Under the condition that the gain from the standard devi-31

ation’s reduction is greater than the loss in the mean’s weighted32

average from the perspective of the fastest node, the WP-SGD33

output will outperform the fastest node.34

All of the following lemmas, corollaries, and theorems are our35

contributions.36

We focus on the first aspect at the beginning: Corollary 1 and37

Lemma 3 show how the mean and standard deviation will change38

by using WP-SGD. Their sum is the upper bound of the relative39

standard deviation which is shown in Lemma 1.40

Lemma 2 is used in the proof of Corollary 1.41

Lemma 2. Suppose that X1 . . . Xk, B are independent distributed42

random variables over Rd. Then if A =
∑k

i=1 qi · X
i and 1 =

∑k
i=1 qi,43

it is the case that44

d(µA, µB) ≤

k∑
i=1

qi · d(µX i , µB)45

In following part of section 4.1, we give theory based on q1−λη,i46

setting.47

Corollary 1. The fastest node consumes t data samples. Dt−Ti
η is the48

distribution of model parameters updated after t − Ti iterations in49

node i, and D#,t
η is the distribution of the stochastic gradient descent50

update in WP-SGD.51

d(ηD#,t
η
, ηD∗

η
) ≤

Gk(1 − ηλ)t

λ
∑k

i=1 (1 − ηλ)Ti
(17)52

Lemma 3. M i,t−Ti is the output of node i. Then, if 53

M#,t
=

k∑
i=1

q1−ηλ,i · M i,t−Ti (18) 54

then the distribution of M#,t is D#,t
η . It is the case that 55

σDη#,t ≤

√
k∑k

i=1 (1 − ηλ)Ti

(
2G

√
η

√
λ

+
G
λ
(1 − ηλ)t

)
(19) 56

Combining Lemma 1, Theorem 1, Corollary 1 whose proof uses 57

Lemma 2, and Lemma 3, we have the following: 58

Theorem 4. Given a cost function c such that ∥c∥Lip and ∥∇c∥Lip
are bounded, the bound of WP-SGD is

Ew∈D[c(w)] − min
w

c(w) ≤

((
Gk(1 − λη)t

λ
∑k

i=1 (1 − λη)Ti

+

√
k∑k

i=1(1 − λη)Ti

(
2G

√
ηλ

λ
+

G
λ
(1 − λη)t

))√
1
2

∥∇c∥Lip

+

√
2ηG2

)2
(20)

Next, we discuss the second aspect. 59

It is apparent that there is no guarantee that the output of 60

WP-SGD will be better than the output from the fastest nodes, 61

because from the viewpoint of the best-performing node, the 62

weighted average will damage its gain from contraction of the 63

mean value term. Here, we offer Corollary 2 that defines the con- 64

ditions under which the output from the fastest nodes will benefit 65

from the normal-performance nodes. In the following, Wz(X, Y) is 66

the Wasserstein distance between two distributions X, Y , and the 67

fastest nodes consume t data samples in an unbalanced-workload 68

system. 69

Corollary 2. For WP-SGD, when∑k
i=1 (1 − ηλ)Ti −

√
k

k −
∑k

i=1 (1 − ηλ)Ti
>

(1 − ηλ)tW1(D#,1
η ,D∗

η)

(1 − ηλ)t · W2(D
#,1
η ,D∗

η) + σD∗
η

(21)

the upper bound of the objective function value of WP-SGD is closer 70

to the minimum than is the upper bound of the objective function 71

value of sequential SGD on the fastest nodes. 72

Wz(D#,1
η ,D∗

η) is not a prior value. However, Corollary 2 still 73

eliminates the dataset whose σD∗
η
and σD#,1

η
are small. σD#,1

η
is 74

positively related to the standard deviation of the dataset. The 75

standard deviation of the dataset will influence the values of 76

W1(D#,1
η ,D∗

η) and W2(D#,1
η ,D∗

η). In an extreme example, when all 77

samples in the dataset are the same, i.e., SGD degenerates into 78

Gradient Descent, i.e. GD, WP-SGD would be invalid, and this is 79

also the case with SimuParallel SGD. 80

Most of the time, the standard deviations of real-world 81

datasets, especially high dimension sparsity dataset, are usually 82

large enough. In the case where the σD#,1
η

and σD∗
η

are large 83

enough, under Corollary 3, WP-SGD would be better than the 84

sequential SGD. 85

Corollary 3. For WP-SGD, when 86

2
k∑

i=1

(1 − ηλ)Ti >
√
k + k (22) 87

the upper bound of the objective function value of WP-SGD is closer 88

to the minimum than is the upper bound of the objective function 89

value of sequential SGD on the fastest nodes. 90

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 7

Fig. 3. An example of using contracting map rate r for fitting the actual
contracting process. In this example, the objective function value decreases from
12000 to zero in 500000 iterations.

Corollary 3 suggests that WP-SGD can tolerate sufficient delay.1

As we can see, the robustness of whole system will be stronger2

as the scale of the cluster increases.3

4.2. Analysis and redesign: weight for the dataset and c(·) whose4

contracting map rate is small5

Above weight design using 1−λη is to meet the upper bound6

of SGD algorithm: The comparison between the upper bound7

shows the superiority between different algorithm. However, in8

practice, not all SGD processes which use different dataset and9

loss function reaches the upper bound.10

For example, the convergence speed of log loss is faster than11

hinge loss; the convergence speed of the process which uses12

small variance dataset is faster than the convergence speed of the13

process which uses large variance dataset.14

Thus, the weight of using 1 − λη should be used in the con-15

dition where the equivalent condition of inequalities is achieved,16

i.e. L(·) is very close to being a linear function (the proof of Lemma17

3 in Zinkevich et al.’s work [29]). This requirement means that L(·)18

is not a strongly convex function.19

The nature of SGD is contracting map. Contracting map rate20

varies during the iteration process for every iteration in SGD21

process. When the loss function’s second derivative is larger, or22

during the process, many of the samples’ directions are parallel23

to the current model parameters’ direction, the contracting map24

rate will be smaller. Therefore, from the standpoint of the overall25

iteration process rather than that of a single iteration, we should26

redesign a smaller contracting map rate to replace (1 − ηλ). We27

denote this new contracting map rate by r . Usually, r should be28

a smaller number when the direction of processing samples is29

closer to the direction of the current model parameters, i.e., wn,30

and the second derivative of L(·) is larger.31

We can determine the value of the new contracting map32

parameter via experience, data fitting, or analysis of training data33

and L(·), as in Fig. 3.34

As we ascertain a value for the new contracting map rate r , we35

rewrite q1−λη,i as qr,i, Theorem 4 as Theorem 5 and Corollary 3 as36

Corollary 4:37

qr,i =
rTi∑k
j=1 r

Tj
38

Theorem 5 (Incorporating r into Theorem 4). Given a cost function c
such that ∥c∥Lip and ∥∇c∥Lip are bounded, and in view of the overall
process, the contracting map rate is r, and the bound of WP-SGD is

Ew∈D[c(w)] − min
w

c(w)

≤

((
Gkr t

λ
∑k

j=1 rTi
+

√
k∑k

j=1 rTi

(
2G

√
ηλ

λ
+

G
λ
r t
))√

1
2

∥∇c∥Lip

+

√
2ηG2

)2
(23)

Corollary 4 (Incorporating r into Corollary 3). Given that WP-SGD 39

runs on a dataset having a large standard deviation and a large 40

standard deviation of the fixed point, and in view of the overall 41

process, the contracting map rate of c(·) is r , and when 42

2
k∑

i=1

rTi >
√
k + k (24) 43

the upper bound of the objective function value of WP-SGD is closer 44

to the minimum than is the upper bound of the objective function 45

value of sequential SGD on the fastest nodes. 46

5. Running popular parallel SGD algorithms combined with 47

WP-SGD in heterogeneous environments 48

Current parallel SGD algorithms lack the feature of robust- 49

ness in heterogeneous environments. However, they are char- 50

acterized by a number of superb features such as the overlap 51

between communication and computing (delay SGD) and fast 52

convergence speed (model average SGD). It is reasonable to con- 53

sider combining WP-SGD with these algorithms in order to gain 54

the benefits of their excellent features and the adaptability to 55

unbalanced-workload environments. 56

5.1. Combining WP-SGD with other model average SGD 57

Mini-batch SGD that averages the model parameters at each 58

iteration [27] is the most important model average SGD. However, 59

averaging at each iteration operation is expensive, and the mini- 60

batch is more vulnerable to performance differences. There is 61

a compromise parallel SGD algorithm that averages model pa- 62

rameters at a fixed s length. The number of span is from the 63

point of the best performance nodes. Here we offer theoretical 64

analyses of this parallel algorithm and its theoretical performance 65

in unbalanced-workload environments, based on the analyses of 66

WP-SGD. 67

Deduction 1. Given a cost function c such that ∥c∥Lip and ∥∇c∥Lip
are bounded, we average parameters every s iterations for the
fastest node in SimuParallel SGD. Then, the bound of the algo-
rithm is

Ew∈D[c(w)] − min
w

c(w) ≤ (25)((
Gr t

λ
+

1
√
k
t/s

(
2G

√
ηλ

λ
+

G
λ
r t
))√

1
2

∥∇c∥Lip +

√
2ηG2

)2

(26)

Deduction 2. Given a cost function c such that ∥c∥Lip and ∥∇c∥Lip
are bounded, we average parameters every s iterations for the
fastest node in WP-SGD. Then, the bound of the algorithm is

Ew∈D[c(w)] − min
w

c(w) ≤

⎛⎝⎛⎝Gr t

λ

(
k∑k

j=1 rTi

)t/s

+

(√
k∑k

j=1 rTi

)t/s (
2G

√
ηλ

λ
+

G
λ
r t
)⎞⎠√1

2
∥∇c∥Lip +

√
2ηG2

⎞⎠2

(27)

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

8 D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

For all nodes with the same performance, the more average1

the operation, the closer the output model parameters will be2

to the function minimum. In this case, our consideration should3

be to balance the cost of operation and the gain from the ‘‘bet-4

ter’’ result. As is well known, not all training datasets’ variances5

are large enough to get the expected effect. On an unbalanced-6

workload system, we should also guarantee that
√
k∑k

j=1 rTj
< 1 to7

ensure overall that the training process is valid.8

5.2. Combining WP-SGD with delay SGD9

Because of the excellent adaptability on different kinds of10

datasets and the overlapping of the cost of communication and11

computing, delay SGD is widely used in machine learning frame-12

works such as MXNet [5], TensorFlow [1], and Petuum [24].13

However, all of these algorithms are designed for a balanced-14

workload environment. In this section, we offer Algorithm 3,15

which combines WP-SGD and one kind of delay SGD to make16

delay SGD algorithms work efficiently in heterogeneous comput-17

ing environments. Some intermediate variables are defined in18

the algorithm description. The working pattern of Algorithm 3 is19

illustrated in Fig. 4.20

Input: Examples {c1, . . . , cm}, learning rate η, k nodes in
system ;

Output: v
1 Randomly partition the examples;
2 Phase 1:
3 For Worker:
4 pull the wi,j from the ith Server;
5 calculate ∂wci,j(wi,j);
6 push the ∂wci,j(wi,j) to the Server;
7 For the ith Server
8 Initialize wi,0 = 0;
9 for j ∈ (0 . . . Forever) do

10 receive ∂wci,j−1−τ (wi,j−1−τ) from the Worker;
11 Initialize Flag = true;
12 Call function Check(wj−1−τ · · ·wj−1, λ, η, xj, Flag);
13 if Flag then
14 wi,j := wi,j−1 − η∂wc i,j(wi,j−1−τ);
15 Call function Check(wj−2 · · ·wj, λ, η, xj, Flag);
16 end
17 if !Flag then
18 abandon wi,j;
19 j = j -1;
20 end
21 end
22 Phase 2:

23 Aggregate v from all Servers v =

k∑
i=1

qr,i · wi,j;

24 Return v;
Algorithm 3: WP-SGD and delay SGD

The proof of Algorithm 3 focuses on two main key points:21

(1) to guarantee that all of wn−τ to wn is on one side of the fixed22

point in the direction of the sample, and (2) to determine the23

value of the maximum contraction map rate when using this kind24

of delay SGD. Both of above 2 key points are described in the proof25

of Lemma 4.26

For the first point, when running the (n + 1)th update step,27

we also need to ensure that the first n update steps satisfy the28

algorithm. The above requirement means that we should be able29

to find a range in which the projection of the unique fixed point30

in the current sample direction addressed. With the processing,31

Input: model parameters {wj−1−τ , . . . , wj−1}, regularization
parameter λ,learning rate η, sample xj, Output Flag;

1 for all jtmp ∈ {j − 1 − τ , . . . , j} do
2 ιjtmp := xj · wjtmp ;
3 ιjtmp−1 := xj · wjtmp−1;
4 ιjtmp−2 := xj · wjtmp−2;
5 β2

:= xj · xj;
6 ιjtmp−1⊥ := wjtmp−1 − ιjtmp−1/

√
β;

7 ιjtmp−2⊥ := wjtmp−2 − ιjtmp−2/
√
β;

8 c∗
:=

∂L(y, ŷ)∂ ŷ

;
9 rate :=

τ
√
λη + c∗ηβ2;

10 ιmin :=
ιjtmp−1 − rate · ιjtmp−2

1 − rate
;

11 if ((ιjtmp /∈ [ιmin, ιjtmp−1] and ιjtmp /∈ [ιjtmp−1, ιmin]) or
ιj−2⊥

ιj−1⊥
> 1) then

12 Flag = false;
13 end
14 end

Algorithm 4: Check function

Fig. 4. Working pattern of Algorithm 3 when the quantities of data differ.

the range should shrink. We calculate the range of the fixed point 32

based on the latest iteration information at the beginning of each 33

update step, like Fig. 5. We only accept the newmodel parameters 34

that are on the same side of this range as the older model 35

parameters; otherwise, we abandon these new model parameters 36

and use another sample to recalculate new model parameters. 37

The above operation is determined by the point of this range 38

closest to the old model parameters (in Algorithm 3, this point 39

is denoted ιmin). These processes are described in Check function 40

in Algorithm 4. 41

For the second point, WP-SGD and Simul Parallel SGD share 42

the same proof frame. In the proof of Simul Parallel SGD, the 43

Lemma 3 in Zinkevich et al.’s work [29] decides the contracting 44

map rate of Simul Parallel SGD. Here, we offer Lemma 4 for 45

Algorithm 3. Using the proof frame of Simul Parallel SGD with 46

following Lemma 4 instead of Lemma 3 in Zinkevich et al.’s 47

work [29], we can find the contracting map rate of Algorithm 3 48

and finish the whole proof. 49

The details of Lemma 4’s proof are offered in the Appendix. 50

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 9

Lemma 4. Let c∗
≥

∂L(y, ŷ)∂ ŷ

 be a Lipschitz bound on the loss1

gradient. Then if ηλ+ ηβ2
maxc

∗
≤ (1 − ηλ)τmax , the Algorithm 3 is a2

convergence to the fixed point in ℓ2 with Lipschitz constant 1 − λη.3

β2
max is defined as following formula: β2

max = max
xi2. τmax is the4

maximum delay.5

As we discussed in Section 2, the maximum lag the system6

can tolerate is the maximum number of workers the system can7

have. When all workers have the same performance, the system8

will achieve the most efficient working state. In practice, it is9

very hard to let all nodes in an unbalanced-workload system have10

the same performance, especially when the clusters consist of11

different kinds of computing devices. Algorithm 3 is the algorithm12

designed for this kind of cluster.13

5.3. Dalay & model average based WP-SGD14

Combining above two algorithms, We propose a mixed parallel15

SGD algorithm, named as dalay & model average based WP-SGD,16

which is shown in algorithm 5.17

Input: Examples {c1, . . . , cm}, learning rate η, k nodes,
allreduce span s;

Output: v
1 Randomly partition the examples;
2 for all i ∈ {1, . . . , k} parallel do
3 Randomly shuffle the data on machine i;
4 Initialize wi,0 = 0;
5 Define the fastest nodes consuming t samples;
6 Define the delay between the fastest node and the ith

node as Ti;
7 Init conter ji = 0;
8 for all n ∈ {1, . . . , t} do
9 Algorithm 3 update w one iteration;

10 if fastest nodes’jfast = s then

11 Aggregate from all nodes w =

k∑
i=1

qr,i · wi,t ;

12 ji = 0;
13 end
14 ji = ji + 1;
15 end
16 end

17 Aggregate from all nodes v =

k∑
i=1

qr,i · wi,t ;

18 Return v;
Algorithm 5: dalay & model average based WP-SGD
Based on the analysis of above algorithms, it is easy to gain18

the conclusion that dalay & model average based WP-SGD can19

converge into the w∗.20

6. Numerical experiments21

6.1. Platform22

We conducted these experiments on a cluster consisting of23

different types of CPU nodes on Alibaba clouds. The detail infor-24

mation of the server in the cluster is shown in Table 1.25

6.2. Algorithm and code setting26

6.2.1. Delay & model average based WP-SGD27

In the code of our experiment, one node uses four threads:28

three compute&bcast thread and one listening&synchronous29

Fig. 5. Algorithm 3 only accepts the new model parameters that are on the
same side of this range as the older model parameters (w0 in this figure).

Table 1
The information of nodes in cluster.
Nodes per
Server

Server CPU Net Mem

1 1 Intel(R) Xeon(R) CPU
E3-1225 v6 @ 3.30 GHz

1000 Mb/s 31 GB

2 3 Intel(R) Xeon(R) CPU
E5-2640 v2 @ 2.40 GHz

10000 Mb/s 116 GB

1 1 Intel(R) Xeon(R) CPU
E5-2640 v2 @ 2.40 GHz

10000 Mb/s 116 GB

2 4 Intel(R) Xeon(R) CPU
E5-2660 v2 @ 2.20 GHz

10000 Mb/s 113 GB

2 2 Intel(R) Xeon(R) CPU
E5-2680 v2 @ 2.80 GHz

1000 Mb/s 55 GB

thread. We use this setting for Intel(R) Xeon(R) CPU E3-1225 v6 30

server only have four cores. 31

In compute&bcast threads, three threads use parameter-server 32

frame asynchronous parallel trains model: computing part con- 33

sists of one server thread and two worker threads. The work of 34

worker threads is pulling model, computing gradient, and push- 35

ing gradient. The work of server threads is receiving gradient, 36

updating model, broadcasting the model. 37

In listening&synchronous thread, this thread is used to listen 38

to the nodes which finished their workload and give the board 39

cast signal to the server thread. 40

For we want to make results have good comparability in the 41

different algorithms, we do not use OpenMP to accelerate worker 42

threads. (As we can see, in E5-2640, E5-2660, E5-2680 nodes, 43

we have free cores. If we use full resources, the performance of 44

mini-batch SGD and SimulParallel SGD would be bad, because the 45

performance of E5-2640 is 50% to 70% than other Server.) 46

In our experiments, we name this algorithm as D&M based 47

WP-SGD. 48

6.2.2. WP-SGD 49

In our experiments, each node uses two threads as OpenMP 50

threads to accelerate the process, because in delay&model aver- 51

age based WP-SGD algorithm, each node uses two worker threads 52

to accelerate the computing process. We use this setting because 53

we want all experimental results are comparability. 54

6.2.3. Simulparallel SGD 55

In our experiments, each node uses two threads as OpenMP 56

threads to accelerate the process, which is the same as the con- 57

figuration with WP-SGD. 58

6.2.4. Mini-batch SGD 59

In our experiments, each node uses two threads as OpenMP 60

threads to accelerate the process, which is the same as the con- 61

figuration with WP-SGD. 62

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

10 D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

We use mini-batch SGD as benchmark because mini-batch1

SGD is the most widely used parallel SGD algorithm in HPC areas2

to train a machine learning model.3

6.2.5. Sequential SGD4

In our experiments, we only use one node on Intel(R) Xeon(R)5

CPU E3-1225 v6 node to measure the performance. We use this6

algorithm as a benchmark because, as a benchmark, other algo-7

rithms show the ability of parallel technologies.8

In this experiment, the sequential SGD process uses two9

threads as OpenMP threads to accelerate the process, which is10

the same as the configuration with WP-SGD.11

6.2.6. Averaging the model parameters directly12

As the baseline, we used the nodes’ output from WP-SGD13

nodes and the outputs created by using the direct averages of the14

model parameters. We name this algorithm as averaging directly.15

We use this algorithm as a benchmark because we want to16

show that the error method to deal with workload unbalance17

problems may cause a catastrophe.18

In our experiments, each node uses two threads as OpenMP19

threads to accelerate the process, which is the same as the con-20

figuration with WP-SGD.21

6.3. Model22

We chose hinge loss, which is used to train the support vec-23

tor machine (SVM) parameters, as our objective function value.24

Compared with other loss functions, the contraction map rate of25

hinge loss is much closer to the contraction map rate of the SGD26

framework, i.e., (1 − ηλ).27

It is worth noting that our work would be more conspicuous28

if we use a deep learning model like VGG16 [20] as an experi-29

ment benchmark. But, our paper focuses on the correctness and30

effectiveness of WP-SGD. There are few works on the mathemat-31

ical properties of deep learning. If we use deep learning model32

parameters, we are not sure that the reasons for the experiment33

result are the intricate deep learning network unknown math34

properties, or the effect of WP-SGD.35

6.4. Data36

We performed experiments on KDD Cup 2010 (algebra) [26]37

and real-sim dataset.38

In KDD Cup 2010 (algebra) datasets, the dataset’s labels y ∈39

{0, 1} and the instances in the dataset are binary, sparse fea-40

tures instances. The dataset contains 8,407,752 instances for41

training and 510,302 instances for testing. Those instances have42

20,216,830 dimensions. Most instances have about 20–40 fea-43

tures on average.44

In the real-sim dataset, the dataset’s labels y ∈ {0, 1} and the45

instances in the dataset are binary, sparse features instances. The46

dataset contains 72,309 instances for training, and we randomly47

selected 1000 samples as test datasets. Those instances have48

20,958 dimensions.49

6.5. KDD Cup 2010 (algebra) dataset experiments50

6.5.1. Configurations:51

In all the experiment, we set λ = 0.01, η = 0.0001. In WP-SGD52

and D&M based WP-SGD, we use r = 0.99999. Because the final53

output is close to the zero vector, and we wanted to have more54

iteration steps, the initial values of all model parameters were set55

to 4. Then, we studied SVM model parameters and calculated the56

objective function value on the testing data.57

In D&M based WP-SGD, different nodes allreduce their model58

when the fastest node exerts 1000 iterations.59

Fig. 6. The Time Performance of Different Algorithm on KDD 2010 Dataset.

Fig. 7. The Epoch Performance of Different Algorithm on KDD 2010 Dataset.

6.5.2. Approach: 60

For SimulParallel SGD, WP-SGD and D&M based WP-SGD, in 61

order to evaluate the convergence speed and hinge loss of the 62

algorithms on an unbalanced-workload system, we used the fol- 63

lowing procedure: for the configuration, we trained 20 model 64

parameters, each on an independent random permutation of a 65

part of the whole dataset. During training, the model parameters 66

were stored on disk after k = 100, 000 × i updates of the fastest 67

nodes. 68

6.5.3. Results: 69

Figs. 6 and 7 show the objective function value of different 70

algorithms with X-axis is the number of iterations and x-axis is 71

time. 72

From the aspect of the epoch, Fig. 7, mini-batch SGD is the 73

fastest algorithm. The output of D&M based WP-SGD is close to 74

mini-batch SGD. SimulParallel SGD, WP-SGD, and sequential SGD 75

share almost the same convergence speed. In detail, in SimulPar- 76

allel SGD, WP-SGD and sequential SGD, SimulParallel is the fastest 77

algorithm, the output of WP-SGD is close to SimulParallel SGD. As 78

the benchmark, the average model directly algorithm is the worst 79

algorithm. 80

From the aspect of wall clock time, Fig. 6, D&M based WP- 81

SGD is the best algorithm. Because of the burden of slow nodes, 82

the performances of all synchronous algorithms receive the im- 83

pacts: the worst algorithm is mini-batch SGD because the cost of 84

communication is expensive. SimulParallel SGD is the worse than 85

WP-SGD. 86

The above experimental results show that 1. When the sys- 87

tem’s workload is balanced, and computing resource is unlimited, 88

the performances of the number of iterations experiment, the 89

synchronous algorithm may be better than the asynchronous 90

algorithm. When the system’s workload is unbalanced, the per- 91

formances of time-experiment, asynchronous algorithms outper- 92

form synchronous algorithms. 2. For inappropriate algorithms 93

or synchronous algorithms on an unbalanced system, parallel 94

technology brings negative effects. 95

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 11

Fig. 8. The Time Performance of Different Algorithm on Real-sim Dataset.

Fig. 9. The Epoch Performance of Different Algorithm on Real-sim Dataset.

6.6. Real-sim dataset experiments1

6.6.1. Configurations:2

In the experiment, we set λ = 0.001, η = 0.1. Because the3

final output is close to the zero vector, and we wanted to have4

more iteration steps, the initial values of all model parameters5

were set to 100. Other settings are the same as the KDD 20106

experiments.7

6.6.2. Approach:8

In order to evaluate the convergence speed and hinge loss of9

the algorithms on an unbalanced-workload system, we used the10

following procedure: for the configuration, we trained 20 model11

parameters, each on an independent random permutation of a12

part of the whole dataset. During training, the model parameters13

were stored on disk after k = 1000×i updates of the fastest node.14

6.6.3. Results:15

Figs. 8 and 9 show the objective function value of different16

algorithms with X-axis is the number of iterations and x-axis is17

time.18

From the aspect of the epoch, Fig. 9, mini-batch SGD is the19

fastest algorithm. The output of D&M based WP-SGD is close to20

mini-batch SGD. SimulParallel SGD, WP-SGD, and sequential SGD21

share almost the same convergence speed. In detail, in SimulPar-22

allel SGD, WP-SGD and sequential SGD, SimulParallel is the fastest23

algorithm, the output of WP-SGD is close to SimulParallel SGD. As24

the benchmark, the average model directly is the worst algorithm.25

From the aspect of wall clock time, Fig. 8, D&M based WP-26

SGD is the best algorithm. Because of the burden of slow nodes,27

the performances of all synchronous algorithms receive the im-28

pacts: the worst algorithm is mini-batch SGD because the cost of29

communication is expensive. SimulParallel SGD is the worse than30

WP-SGD.31

The above experimental results show that 1. When the sys-32

tem’s workload is balanced, and computing resource is unlimited,33

Fig. 10. Using SVM model parameters in different SGD algorithms on a cluster.
In this figure, to show results clearly, we only show the key part of whole
convergence process.

the performances of the number of iterations experiment, the 34

synchronous algorithm may be better than the asynchronous 35

algorithm. When the system’s workload is unbalanced, the per- 36

formances of time-experiment, asynchronous algorithms outper- 37

form synchronous algorithms. 2. For inappropriate algorithms 38

or synchronous algorithms on an unbalanced system, parallel 39

technology brings negative effects. 40

6.6.4. Extra experiments 41

For the detail of Fig. 9 is blurred between sequential SGD, 42

SimuParallel SGD, WP-SGD, and the average model directly algo- 43

rithm, we also conduct other experiments and zoom in the figure. 44

In this experiment, algorithm settings are the same as real-sim 45

experiments and we use doubled computing resources. We also 46

conduct experiments which only use ten nodes as the benchmark. 47

We think these benchmarks will show more essential characters. 48

Our experimental results are shown in Fig. 10. 49

Fig. 10 shows the objective function value of sequential SGD, 50

SimuParallel SGD, WP-SGD, and averaging the model parameters 51

directly. To make the presentation clear, we only present part of 52

the whole data in Fig. 10. In terms of wall clock time, the model 53

parameters which are obtained from SimuParallel SGD clearly 54

outperformed the ones obtained by other algorithms. The output 55

of WP-SGD was close to the output on a balanced-workload 56

system. Unsurprisingly, averaging the model parameters directly 57

turned out to be the worst algorithm. The above results are 58

consistent with Theorem 4. The convergence speeds of WP-SGD 59

and SimuParallel SGD are the closest. Thus, on an unbalanced- 60

workload system, WP-SGD would obtain a better objective func- 61

tion value in a short time. 62

7. Conclusion 63

In this paper, we have proposed WP-SGD, a data-parallel 64

stochastic gradient descent algorithm. WP-SGD inherits the ad- 65

vantages of SimuParallel SGD: little I/O overhead, ideal for 66

MapReduce implementation, superb data locality, and fault tol- 67

erance properties. This algorithm also presents strengths in an 68

unbalanced-workload computing environment such as a het- 69

erogeneous cluster. We showed in our formula derivation that 70

the upper bound of the objective function value in WP-SGD on 71

an unbalanced-workload system is close to the upper bound of 72

the objective function value in SimuParallel SGD on a balanced- 73

workload system. Our experiments on real-world data showed 74

that the output of WP-SGD was reasonably close to the output 75

on a balanced-workload system. 76

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

12 D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

Declaration of competing interest1

The authors declare that they have no known competing finan-2

cial interests or personal relationships that could have appeared3

to influence the work reported in this paper.4

Acknowledgment5

This work was supported by the National Key R&D Program of6

China under Grant No. 2016YFB0200803, No. 2017YFB0202302,7

No. 2017YFB0202001, No. 2017YFB0202502, No. 2017YFB0202105,8

No. 2018YFB0704002, No. 2018YFC0809306; the Strategic Priority9

Research Program of Chinese Academy of Sciences, Grant No.10

XDC01000000; the National Natural Science Foundation of China11

under Grant No. 61972376, No. 61502450, No. 61432018, No.12

61521092; the Science Foundation of Beijing No. L182053; SKL13

of Computer Architecture Foundation No. CARCH3504. We also14

thank Dr. Fei Teng from ICT, CAS for his valuable suggestions.15

Appendix16

17

Lemma 2. Suppose that X1 . . . Xk, B are independent distributed18

random variables over Rd. Then if A =
∑k

i=1 qi · X
i and 1 =

∑k
i=1 qi,19

it is the case that20

d(µA, µB) ≤

k∑
i=1

qi · d(µX i , µB)21

Proof. By linearity of expectation, if X i are independent dis-22

tributed random variables then23

µA =

k∑
i=1

qi · µX i24

Because25

d(a, b) = ∥a − b∥26

and27

1 =

k∑
i=1

qi28

it holds following results.29

µA − µB =

k∑
i=1

qi(µX i − µB) (28)30

Considering triangle inequality, we have final result.31

d (µA − µB) ≤

k∑
i=1

qi
µB − µX i

 =

k∑
i=1

qi · d(µX i , µB) □32

Corollary 1. The fastest node consumes t data samples, Dt−Ti
η is the33

distribution of model parameters updated after t − Ti iterations in34

node i, and D#,t
η is the distribution of the stochastic gradient descent35

update in WP-SGD.36

d(µD#,t
η
, µD∗

η
) ≤

Gk(1 − ηλ)t

λ
∑k

i=1 (1 − ηλ)Ti
37

Proof. Suppose M#,t , which is a random variable, is the output
of the algorithm, and M i,t−Ti is the output of each node. Then

M#,t
=

k∑
i=1

qi · M i,t−Ti

based on Theorem 3, we have following result

d(µ
D
t−Ti
η
, µD∗

η
) ≤

G
λ
(1 − ηλ)t−Ti

Thus, using Lemma 2,

d(µD#,t
η
, µD∗

η
) ≤

G
λ

k∑
i=1

qi · (1 − ηλ)t−Ti

Combining the above with the definition of

q1−λη,i =
(1 − λη)Ti∑k
j=1(1 − λη)Tj

we have

d(µD#,t
η
, µD∗

η
) ≤

Gk(1 − ηλ)t

λ(
∑k

i=1 (1 − ηλ)Ti)
□

Lemma 3. M i,t−Ti is the output of node i. Then, if

M#,t
=

k∑
i=1

q1−ηλ,i · M i,t−Ti

then the distribution of M#,t is D#,t
η . It is the case that 38

σDη#,t ≤

√
k∑k

i=1 (1 − ηλ)Ti

(
2G

√
η

√
λ

+
G
λ
(1 − ηλ)t

)
39

Proof.

σ 2
M#,t =

k∑
i=1

q21−λη,i · σ
2
M i,t−Ti

Combining this with Theorem 3, we obtain

q1−ηλ,i · σM i,t−Ti

≤ q1−ηλ,i · (
2
√
ηG

√
λ

+
G
λ
(1 − ηλ)t−Ti)

=
1∑k

j=1 (1 − ηλ)j
(
2G

√
η

√
λ

· (1 − ηλ)Ti +
G
λ
(1 − ηλ)t)

≤
1∑k

j=1 (1 − ηλ)j
(
2G

√
η

√
λ

+
G
λ
(1 − ηλ)t)

Thus, 40

σ 2
M#,t ≤

k

(
∑k

i=1 (1 − ηλ)Ti)
2 (

2G
√
η

√
λ

+
G
λ
(1 − ηλ)t)

2

□ 41

Theorem 4. Given a cost function c such that ∥c∥Lip and ∥∇c∥Lip
are bounded, the bound of WP-SGD is

Ew∈D[c(w)] − min
w

c(w)

≤

((
Gk(1 − λη)t

λ
∑k

j=1 (1 − λη)Ti
+

√
k∑k

j=1(1 − λη)Ti

(
2G

√
ηλ

λ
+

G
λ
(1 − λη)t

))√
1
2

∥∇c∥Lip

+

√
2ηG2

)2
(29)

Proof. Starting from Theorem 1:

Ew∈D[c(w)] − min
w

c(w) ≤

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 13

σ
p
D

√
2∥∇c∥Lip(c(p) − min

v
(v))

+ (∥∇c∥Lip(σ
p
D)

2
/2) + (c(p) − min

v
c(w)) (30)

i.e.

Ew∈D[c(w)] − min
w

c(w) ≤

2σ p
D

√
1
2
∥∇c∥Lip(c(p) − min

v
(v))

+ (
1

√
2

√∇cLip
σ p

D)
2

+

√
(c(p) − min

v
c(w))

2
(31)

i.e.

Ew∈D[c(w)] − min
w

c(w) ≤(
σ P
D

√
∥∇c∥
2

+

√
c (p)− min

v
c (w)

)2

(32)

Treat p as the machine learning model gain by WP-SGD, and
we can gain

Ew∈D∗ [c(w)] − min
w

c(w) ≤(
σ vD∗

η

√
∥∇c∥
2

+

√
c
(
µD∗

η

)
− min

w
c (w)

)2

(33)

Using Lemma 1, we can gain following formula:

Ew∈D∗ [c(w)] − min
w

c(w) ≤((
σD#,t

η
+ d

(
µD#,t

η
, µD∗

η

))√
∥∇c∥
2

+√
c
(
µD∗

η

)
− min

w
c (w)

)2
(34)

Using Lemma 3 and Corollary 1, to replace the σD#,t
η

, d
(
µD#,t

η
,1

µD∗
η

)
and

√
c
(
µD∗

η

)
− minw c (w). We can get Theorem 4. □2

Corollary 2. For WP-SGD, when∑k
i=1 r

Ti −
√
k

k −
∑k

i=1 rTi

>
r tW1(D#,1

η ,D∗
η)

r t · W2(D
#,1
η ,D∗

η) + σD∗
η

the upper bound of the objective function value of WP-SGD is closer3

to the minimum than is the upper bound of the objective function4

value of sequential SGD on the fastest nodes.5

Proof. When we deduce the proof of Simul Parallel SGD (Theo-
rem 11, Fact 28, Lemma 30, Corollary 23, Theorem 69, Theorem
70 in Zinkevich et al.’s work [29] and Lemma 1 in this paper), we
would notice that the G

λ
is the upper bound of W1(D#,0

η ,D∗
η) and

W2(D#,0
η ,D∗

η). In practice, G
λ

does not have practical application
value for G

λ
is too large and vague for different datasets and

loss function. A more tight upper bound should be described as
follows:

Ew∈D[c(w)] − min
w

c(w)

≤

((
k(1 − λη)t∑k
j=1(1 − λη)Ti

W1
(
D#,0
η ,D∗

η

)
+

√
k∑k

j=1(1 − λη)Ti

(
σD∗

η
+ (1 − λη)tW2

(
D#,0
η ,D∗

η

)))√1
2

∥∇c∥

+

√
2ηG2

)2
Although the distribution of w0, i.e. D#,0

η , is unobservable:
the algorithm set w0 as a fixed value, the distribution of w1 is
determined by the dataset. We can use the distribution of w1
can be calculated by the dataset and loss function. Thus, it is
practical valuable for us use the distribution of w1 to rewrite
above formula:

Ew∈D[c(w)] − min
w

c(w)

≤

((
k(1 − λη)t−1∑k
j=1(1 − λη)Ti

W1
(
D#,1
η ,D∗

η

)
+

√
k∑k

j=1(1 − λη)Ti

(
σD∗

η
+ (1 − λη)t−1W2

(
D#,1
η ,D∗

η

)))√1
2

∥∇c∥

+

√
2ηG2

)2
When k = 1 and Ti = 0 we can gain the upper bound of 6

sequential SGD. Thus, we can gain Corollary 2 compared to above 7

upper bounds. We can gain the final conclusion by replacing 8

(1 − ηλ) with r . □ 9

Corollary 3. For WP-SGD, when

2
k∑

i=1

rTi >
√
k + k

the upper bound of the objective function value of WP-SGD is closer 10

to the minimum than is the upper bound of the objective function 11

value of sequential SGD on the fastest nodes. 12

Proof. Notice that Ew∈D[c(w)] − min
w

c(w) decreases as the 13

first part of Theorem 4 decreases. The first part of Theorem 4, 14

i.e. Eq. (35), which also can be written in Eq. (36). 15(
Gk(1 − λη)t

λ
∑k

j=1 (1 − λη)Ti
+

√
k∑k

j=1(1 − λη)Ti

(
2G

√
ηλ

λ
+

G
λ
(1 − λη)t

))
(35) 16

G
λ

(
k +

√
k∑k

j=1 (1 − ηλ)Ti
(1 − ηλ)Ti +

2
√
k∑k

j=1 (1 − ηλ)Ti

√
ηλ

)
(36) 17

In addition, the sequential algorithms are a special case in WP- 18

SGD when k = 1. Thus, if WP-SGD is better than the sequential 19

algorithm, the first part of Theorem 4 must be less than 20

G(1 − ηλ)t

λ
+

(
2G

√
η

√
λ

+
G
λ
(1 − ηλ)t

)
21

which can be written as 22

G
λ

(
2(1 − ηλ)t + 2

√
ηλ

)
23

It is apparent that if following inequalities hold, we obtain the
result.

k +
√
k∑k

i=1 (1 − ηλ)Ti
≤ 2

and
√
k∑k

i=1 (1 − ηλ)Ti
≤ 1

which means

2
k∑

i=1

(1 − ηλ)Ti >
√
k + k

We can gain the final conclusion by replacing (1−ηλ) with r . □1

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

14 D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

Deduction 1. Given a cost function c such that ∥c∥Lip and ∥∇c∥Lip
are bounded, we average parameters every s iterations for the
fastest node in SimuParallel SGD. Then, the bound of the algo-
rithm is

Ew∈D[c(w)] − min
w

c(w)

≤

((
Gr t

λ
+

1
√
k
t/s

(
2G

√
ηλ

λ
+

G
λ
r t
))√

1
2

∥∇c∥Lip

+

√
2ηG2

)2
(37)

Proof. Every averaging operation reduces the standard deviation2

by 1/
√
k, and every iteration step reduces the Euclidean distance3

and part of the standard deviation by (1 − ηλ). Thus, we obtain4

Deduction 1. □5

Deduction 2. Given a cost function c such that ∥c∥Lip and ∥∇c∥Lip
are bounded, we average parameters every s iterations for the
fastest node in WP-SGD. Then, the bound of the algorithm is

Ew∈D[c(w)] − min
w

c(w)

≤

⎛⎝⎛⎝Gr t

λ

(
k∑k

j=1 (1 − λη)Ti

)t/s

+

(√
k∑k

j=1(1 − λη)Ti

)t/s (
2G

√
ηλ

λ
+

G
λ
r t
)⎞⎠√1

2
∥∇c∥Lip

+

√
2ηG2

)2
(38)

Proof. Every averaging operation reduces the variance by6 √
k∑k

j=1 (1−ηλ)Tj
. Every iteration steps reduce the Euclidean distance7

and part of the variance by (1 − ηλ). We obtain the final8

deduction. □9

Lemma 4. Let c∗
≥

∂L(y, ŷ)∂ ŷ

 be a Lipschitz bound on the10

loss gradient. Then if ηλ + ηβ2
maxc

∗
≤ (1 − ηλ)τmax and there11

exist samples to make the algorithm continue at each iteration, the12

Algorithm 3 is a convergence to the fixed point in ℓ2 with Lipschitz13

constant 1 − λη. β2
max is defined as following formula: β2

max =14

max
xi2.15

Proof. This proof contains two parts: 1. this iterative procedure16

has fixed point. 2. Using any initial point, the Algorithm 3 is17

a convergence to the fixed point in ℓ2 with Lipschitz constant18

1 − λη.19

For the first part:20

When τ = 0, Algorithm 3 must have a fixed point for Algo-
rithm 3 is degenerated into algorithm traditional sequence SGD
algorithm. Traditional sequential SGD must have a fixed point
(Lemma 3 in [29]). And we name the fixed point of sequential
SGD as v. For the sequence of fixed point, we have v = v1 =

v2 = · · · = vn and following formula is still true.

vn+1 = vn − ηλvn−τ − ηxj
∂

∂ ŷ
L(yj, ŷ) |vn−τ xj

= v − ηλv − ηxj
∂

∂ ŷ
L(yj, ŷ) |vnxj

= vn − ηλvn−1 − ηxj
∂

∂ ŷ
L(yj, ŷ) |vnxj

= v = v1 = v2 = · · · = vn (39)

Thus, sequential SGD’s fixed point is the Algorithm 3’s fixed point. 21

For the second part: 22

Firstly, by gathering terms, we obtain 23

wn+1 = wn − ηλwn−τ − ηxj
∂

∂ ŷ
L(yj, ŷ) |wn−τ xj 24

Define u : R ↦→ R to be equal to u(z) =
∂

∂Z
L(yi, z). Because L(yi, ŷ) 25

is convex in ŷ, u(z) is increasing, and u(z) is Lipschitz continuous 26

with constant c∗. 27

wn+1 = wn − ηλwn−τ − ηxju(wn−τ xj) 28

We break down w into w⊥ and w∥, and w∥ is parallel with simple 29

xj, where w = w⊥ + w∥. Thus, 30

wn+1∥ = wn∥ − ηλwn−τ∥ − ηxju(wn−τ∥xj) 31

32

wn+1⊥ = wn⊥ − ηλwn−τ⊥ 33

Finally, note that d(w, v) =
√
d2(w∥, v∥) + d2(w⊥, v⊥) For the 34

vertical dimension, because Check function guarantees that wi⊥, 35

i = n− τ , . . . , n are to the same direction, we can gain following 36

formula: 37

∥wn+1⊥∥ = ∥wn⊥∥ − ηλ ∥wn−τ⊥∥ 38

Thus,
∥wn+1⊥∥

∥wn⊥∥
= 1 − ηλ

∥wn−τ⊥∥

∥wn⊥∥

= 1 − ηλ
∥wn−1⊥∥

∥wn⊥∥
∗

∥wn−2⊥∥

∥wn−1⊥∥
∗ · · · ∗

∥wn−τ⊥∥

∥wn−τ+1⊥∥
< 1 − ηλ

Above requirement is guaranteed by Check function in 39

Algorithm 4. 40

Now, we focus on the dimension parallel to xj. We define
α(wn) = (xj)Twn (in Algorithm 3, it is ιn, and it is the projection
of wn on xj), so we can know that

α(wn+1) = α(wn) − ηλα(wn−τ) − ηu(α(wn−τ))β2

This kind of delay SGD must have a fixed point (first part of this
proof), and we denote this fixed point by v:

d(w∥, v∥) =
1
β

|α(w) − α(v)|

d(wn+1∥, v∥) =
1
β

|(wn − η(λα(wn−τ))) − (v − η(λα(v)))|

Without loss of generality, assume that α(wi) ≥ α(v) for all 41

i < n + 1 is true. Since α(wn) ≥ α(v), u(α(wn)) ≥ u(α(v)). By 42

Lipschitz continuity, 43

u(α(wn)) − u(α(v)) ≤ c∗(α(wn) − α(v)) 44

Here, we define 45

ψn = α(wn) − α(v) 46

Because of the assumption, we know that ψn ≥ 0, and at the 47

beginning, w0 = 0, which means that length0 = 0. The following 48

operation is to provide a rough idea of the range of v. What we 49

care about is the range of v closest to w0, which we denote by 50

lengthmin. τmax is the maximum delay. 51

A rearranging of the terms yields 52

ψn+1 = |ψn − ηλψn−τ − ηβ2(u(α(wn−τ)) − u(α(v)))| 53

To be able to eliminate the absolute value brackets, we need 54

the terms in the absolute value brackets to be positive. Because 55

u(α(wn)) − u(α(v)) ≤ c∗(α(wn) − α(v)) if 56

ψn − ηλψn−τ − ηβ2(u(α(wn−τ)) − u(α(v))) > 0 57

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 15

it follows that1

ψn

ψn−τ
> ηλ+ ηβ2c∗

2

To satisfy the above terms, we require that3

ψn

ψn−1
>

τ
√
ηλ+ ηβ2c∗4

Above requirement is guaranteed by Check function in5

Algorithm 4.6

Above requirement can be rewritten as7

ιmin =
ιt−1 − rate ∗ ιt−2

1 − rate
8

Note that on the assumption, (α(wn)) > α(v), and so9

ψn+1 ≤ ψn − ηλψn−τ10

It is apparent that ψn is a non-increasing series, which means that11

ψn+1

ψn
< 1 − ηλ12

It is apparent that η should satisfy13

ηλ+ ηβ2c∗ <
ψn

ψn−τ
< (1 − ηλ)τ14

and from the whole dataset aspect, and τ reach the maximum, η15

should satisfy16

ηλ+ ηβ2
maxc

∗ <
ψn

ψn−τ
< (1 − ηλ)τmax17

and this then implies that

d(wn+1∥, v) =
1
β
(α(wn + 1) − α(v))

≤ (1 − ηλ)
1
β
(α(wn) − α(v)) = (1 − ηλ)d(wn∥, v∥) □

References18

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,19

S. Ghemawat, G. Irving, M. Isard, Tensorflow: A system for large-scale20

machine learning, 2016.21

[2] L. Bottou, Large-scale machine learning with stochastic gradient descent,22

in: Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–186.23

[3] L. Bottou, O. Bousquet, The tradeoffs of large scale learning, in: Conference24

on Neural Information Processing Systems, Vancouver, British Columbia,25

Canada, December, 2007, pp. 161–168.26

[4] S. Chaturapruek, J.C. Duchi, C. Re, Asynchronous stochastic convex27

optimization: The noise is in the noise and SGD don’t care, 2015,28

pp. 1531–1539.29

[5] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,30

Z. Zhang, MXNet: A flexible and efficient machine learning library for31

heterogeneous distributed systems, Statistics (2015).32

[6] J. Dean, G.S. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M.Z. Mao, M.33

Ranzato, A. Senior, P. Tucker, Large scale distributed deep networks, in:34

International Conference on Neural Information Processing Systems, 2012,35

pp. 1223–1231.36

[7] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large37

clusters, in: Conference on Symposium on Opearting Systems Design and38

Implementation, 2004, pp. 107–113.39

[8] O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, Optimal distributed online40

prediction using mini-batches, J. Mach. Learn. Res. 13 (1) (2012) 165–202.41

[9] J.C. Duchi, A. Agarwal, M.J. Wainwright, Distributed dual averaging in42

networks, in: Advances in Neural Information Processing Systems 23:43

Conference on Neural Information Processing Systems 2010. Proceedings of44

a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada,45

2010, pp. 550–558.46

[10] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online47

learning and stochastic optimization, J. Mach. Learn. Res. 12 (7) (2010)48

257–269.49

[11] N. Feng, B. Recht, C. Re, S.J. Wright, Hogwild!: A lock-free approach to 50

parallelizing stochastic gradient descent, Adv. Neural Inf. Process. Syst. 24 51

(2011) 693–701. 52

[12] Q. Ho, J. Cipar, H. Cui, J.K. Kim, S. Lee, P.B. Gibbons, G.A. Gibson, G.R. 53

Ganger, E.P. Xing, More effective distributed ML via a stale synchronous 54

parallel parameter server, Adv. Neural Inf. Process. Syst. 2013 (2013) 55

(2013) 1223–1231. 56

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. 57

Guadarrama, T. Darrell, Caffe: Convolutional Architecture for Fast Fea- 58

ture Embedding, in: ACM International Conference on Multimedia, 2014, 59

pp. 675–678. 60

[14] J. Langford, A.J. Smola, M. Zinkevich, Slow learners are fast, in: Advances 61

in Neural Information Processing Systems 22: Conference on Neural 62

Information Processing Systems 2009. Proceedings of a Meeting Held 63

7-10 December 2009, Vancouver, British Columbia, Canada, 2009, pp. 64

2331–2339. 65

[15] X. Lian, C. Zhang, H. Zhang, C. Hsieh, W. Zhang, J. Liu, Can decentralized 66

algorithms outperform centralized algorithms? A case study for decentral- 67

ized parallel stochastic gradient descent, Neural Inf. Process. Syst. (2017) 68

5330–5340. 69

[16] U.V. Luxburg, O. Bousquet, Distance-Based Classification with Lipschitz 70

Functions, Springer Berlin Heidelberg, 2003, pp. 314–328. 71

[17] A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro, Robust stochastic approx- 72

imation approach to stochastic programming, in: SIAM J. Optim., 2009, 73

pp. 1574–1609. 74

[18] Y. Nesterov, Primal-dual subgradient methods for convex problems, Math. 75

Program. 120 (1) (2009) 221–259. 76

[19] S. Shalev-Shwartz, N. Srebro, SVM optimization: Inverse dependence on 77

training set size, in: International Conference on Machine Learning, 2008, 78

pp. 928–935. 79

[20] K. Simonyan, A. Zisserman, Very deep convolutional networks for 80

large-scale image recognition, Comput. Sci. (2014). 81

[21] H. Tang, C. Zhang, S. Gan, T. Zhang, J. Liu, Decentralization meets 82

quantization, 2018, arXiv: Learning. 83

[22] T. White, Hadoop: The Definitive Guide, Yahoo! Press, 2010, pp. 1–4. 84

[23] J. Wu, W. Huang, J. Huang, T. Zhang, Error compensated quantized SGD 85

and its applications to large-scale distributed optimization, Int. Conf. Mach. 86

Learn. (2018) 5321–5329. 87

[24] E.P. Xing, Q. Ho, W. Dai, J.K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, 88

Y. Yu, Petuum: A new platform for distributed machine learning on big 89

data, IEEE Trans. Big Data 1 (2) (2013) 49–67. 90

[25] Y. You, Z. Zhang, C. Hsieh, J. Demmel, K. Keutzer, Imagenet training in 91

minutes, Int. Conf. Parallel Process. (2018) 1. 92

[26] H. Yu, H. Lo, H. Hsieh, Feature engineering and classifier ensemble for KDD 93

cup 2010, in: Jmlr Workshop and Conference, 2010. 94

[27] J. Zhang, C. De Sa, I. Mitliagkas, C. Ré, Parallel SGD: When does averaging 95

help? 2016, arXiv preprint arXiv:1606.07365. 96

[28] Y. Zhang, J.C. Duchi, M.J. Wainwright, Communication-efficient algorithms 97

for statistical optimization, 14(1) (2012) 6792–6792. 98

[29] M. Zinkevich, M. Weimer, A.J. Smola, L. Li, Parallelized stochastic gradient 99

descent, Adv. Neural Inf. Process. Syst. 23 (23) (2010) 2595–2603. 100

101

Cheng Daning received his Bachelor in computer sci- 102

ence and technology from Sun Yat-sen University, 103

China and Ph.D. in computer architecture from Insti- 104

tute of Computing Technology, Chinese Academy of 105

Sciences, China in 2014 and 2020, respectively. His 106

research interests focus on machine learning, parallel 107

stochastic optimization algorithm, parallel and dis- 108

tributed computing, and parallel and distributed deep 109

learning. 110

111

Shigang Li received his Bachelor in computer science 112

and technology and Ph.D. in computer architecture 113

from the University of Science and Technology Bei- 114

jing, China, in 2009 and 2014, respectively. He was a 115

joint Ph.D. student in University of Illinois at Urbana– 116

Champaign from Sept. 2011 to Sept. 2013 funded by 117

CSC. He was an Assistant Professor (from June 2014 to 118

Aug. 2018) in State Key Lab of Computer Architecture, 119

Institute of Computing Technology, Chinese Academy 120

of Sciences. From Aug. 2018 to now, he is a postdoc 121

researcher in Department of Computer Science, ETH 122

Zurich. He is a member of ACM and IEEE. His research interests include parallel 123

and distributed computing, parallel and distributed deep learning, and machine 124

learning systems. 125

http://arxiv.org/abs/1606.07365

YJPDC: 4263

Please cite this article as: D. Cheng, S. Li and Y. Zhang, WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system, Journal of Parallel and
Distributed Computing (2020), https://doi.org/10.1016/j.jpdc.2020.06.011.

16 D. Cheng, S. Li and Y. Zhang / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

1

Yunquan Zhang received his B.S. degree in computer2

science and engineering from the Beijing Institute3

of Technology in 1995. He received a Ph.D. degree4

in Computer Software and Theory from the Chinese5

Academy of Sciences in 2000. He is a full professor6

and Ph.D. Advisor of State Key Lab of Computer Archi-7

tecture, ICT, CAS. He is also appointed as the Director8

of National Supercomputing Center at Jinan and the9

General Secretary of China’s High Performance Com-10

puting Expert Committee. He organizes and distributes11

China’s TOP100 List of High Performance Computers,12

which traces and reports the development of the HPC system technology and13

usage in China. His research interests include the areas of high performance14

parallel computing, focusing on parallel programming models, high-performance15

numerical algorithms, and performance modeling and evaluation for parallel16

programs.17

	yjpdc4263.pdf
	WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system
	Introduction
	Related work
	Background and main idea
	Notation and definitions
	Introduction to SGD theory

	Proof and analysis
	Analysis of WP-SGD
	Analysis and redesign: weight for the dataset and c() whose contracting map rate is small

	Running popular parallel SGD algorithms combined with WP-SGD in heterogeneous environments
	Combining WP-SGD with other model average SGD
	Combining WP-SGD with delay SGD
	Dalay model average based WP-SGD

	Numerical experiments
	Platform
	Algorithm and code setting
	Delay model average based WP-SGD
	WP-SGD
	Simulparallel SGD
	Mini-batch SGD
	Sequential SGD
	Averaging the model parameters directly

	Model
	Data
	KDD Cup 2010 (algebra) dataset experiments
	Configurations:
	Approach:
	Results:

	Real-sim dataset experiments
	Configurations:
	Approach:
	Results:
	Extra experiments

	Conclusion
	Declaration of competing interest
	Acknowledgment
	Appendix
	References

