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Why Dataset Properties Bound the Scalability of
Parallel Machine Learning Training Algorithms
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Abstract—As the training dataset size and the model size of machine learning increase rapidly, more computing resources are
consumed to speedup the training process. However, the scalability and performance reproducibility of parallel machine learning
training, which mainly uses stochastic optimization algorithms, are limited. In this paper, we demonstrate that the sample difference in
the dataset plays a prominent role in the scalability of parallel machine learning algorithms. We propose to use statistical properties of
dataset to measure sample differences. These properties include the variance of sample features, sample sparsity, sample diversity,
and similarity in sampling sequences. We choose four types of parallel training algorithms as our research objects: (1) the
asynchronous parallel SGD algorithm (Hogwild! algorithm), (2) the parallel model average SGD algorithm (minibatch SGD algorithm),
(3) the decentralization optimization algorithm, and (4) the dual coordinate optimization (DADM algorithm). Our results show that the
statistical properties of training datasets determine the scalability upper bound of these parallel training algorithms.

Index Terms—parallel training algorithms, training dataset, scalability, stochastic optimization methods.

1 INTRODUCTION

In the area of parallel computing theory, Gustafson’s law is
used to estimate the parallel speedup in the case that the workload
of the parallelizable part of an application increases linearly with
the compute resources. In machine learning, stochastic optimiza-
tion methods, such as stochastic gradient descent and stochastic
dual coordinate ascent, are usually used to train the model. Com-
monly, training algorithms learn models from a considerably large
training dataset. To speedup the training process, most schemes
use data parallelism where sample evaluation is partitioned across
workers. By keeping the sample size of each worker fixed, the total
workload increases proportionally with the number of workers,
and thus the training throughput can be improved significantly. By
now, Gustafson’s law seems an ideal theoretical tool to estimate
the speedup and the scalability of machine learning training based
on data parallelism. However, to secure statistical reliability, the
total sample size (namely, the batch size, which is related to
the parallel degree) cannot always be increased since large batch
sizes reduce the number of samples. Empirical results [1], [2]
have shown the reduced model accuracy because of large batch
size. Therefore, to guarantee the model accuracy, the scalability of
parallel machine learning training algorithms is usually bounded.

In practice, the optimization algorithms are designed for gen-
eral purposes. However, we notice the phenomenon that different
training tasks suit different optimization algorithms. For adver-
tisement recommendation, the asynchronous parallel methods are
the mainstream. For NLP model training tasks, AllIReduce manner
synchronous parallel methods are more effective. What is more,
current parallel and distributed optimization methods fail to work
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on a super-large scale computing environments with general pur-
poses Al training tasks. Their performance does not improve too
much with the increase of the computing resources [3]-[6], [6]-
[14].

The reason for above theory and practice limitations is that
in parallel machine learning training, in order to keep the model
accuracy constant, the total workload among different work-
ers/threads is usually a nonlinear function with the number of
workers/threads. Therefore, the size of dataset, i.e., the workload,
alone cannot reflect the degree of parallelism for machine learning
training problems in practice. Our main target is to define and
find more persuasive properties about the scalability of stochastic
optimization algorithms, based on which we give the explanation
to the phenomenas mentioned above.

From the perspective of optimization algorithms, the problem
settings of different optimization problems are of the same type.
And all of these parallel algorithms are rooted in the same
sequential algorithms, i.e. SGD or SDCA. It is natural to attribute
the main difference for different tasks into the difference of dataset
properties, i.e., the mathematical features of objective function.
Thus, in this paper, we analyze the relationship between the
parallel efficiency of parallel training algorithms and the dataset
statistical properties.

To achieve high efficiency, we usually hope that the benefit
of parallelization is remarkable, namely, the positive effect is
large with more workers being added into the training system.
The above expectation is related to the degree of parallelism
of a training system: A large positive effect encourages users
further put more computing resources into the system. Based
on the above principle and the change of objective function’s
value, we design a set of measurement methods to describe and
measure the parallel efficiency and scalability of parallel stochastic
optimization algorithms.

To make our methodology widely applied, we analyze and
summarize the general mathematical properties for four different
kinds of state-of-the-art parallel optimization methods: (1) the
asynchronous parallel SGD algorithm, i.e., ASGD (Hogwild!
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algorithm) [15], (2) the parallel model average SGD algorithm
(minibatch SGD algorithm!, (3) the decentralization optimization
algorithm (ECD-PSGD) [16], and (4) the dual coordinate op-
timization (distributed alternating dual maximization algorithm,
abbr. DADM) [17].

We choose to analyze these four algorithms because they are
either widely used or at the forefront of machine learning training
research. Hogwild! is a centralized asynchronous training algo-
rithm, which is implemented in mainstream training systems, such
as TensorFlow [18] and MXNet [19]. Mini-batch SGD (Large-
batch SGD) is the most widely used method in parallel training
on HPC machines [9] [20]. ECD-PSGD and DADM stand for the
main trend of optimization algorithms in current research: dual
algorithm, decentralization, and data compression (quantization).
We choose these algorithms also because they are well proven. We
do not choose the pipeline parallel method because recent work [6]
proves that it may only benefit nonsmooth problems.

Through the theoretical analysis and the experimental results,
we find that when the machine learning model is fixed, the sample
difference plays a vital role in the scalability. Some statistical
properties of the dataset can describe sample differences. These
statistical properties include (1) the variance in the sample feature
in the dataset, (2) the sparsity of the sample in the dataset, (3)
the diversity of the sample in the dataset, (4) the similarity of
successive sampling samples. In detail, we present the following
mathematical properties for scalability in a theoretical manner:

Upper Bound Conclusion: For stochastic optimization algo-
rithms, there exists a supremum for the parallelism degree, which
is decided by the statistical properties of datasets.

Sampling Conclusion: When the stochastic algorithm is fixed,
the upper bound of scalability is positively related with the degree
of difference between adjacent samples in the sampling sequence.

Applicability Conclusion: We propose that different algo-
rithms suit different datasets. For DADM, Hogwild!, minibatch
SGD and ECD-PSGD we have following Applicability Conclu-
sion: DADM suits for the high diversity datasets; for ASGD
(such as Hogwild!), minibatch SGD and ECD-PSGD, we present
them in Figure 1.

High Feature Variance

dataset suit for
batch SGD, ECD-PSGD

non-existent

Sparse Dense

Dataset suit for:
Hogwild!(ASGD)

One Sample dataset:
not suit for parallel

Low Feature Variance

Figure 1. Different parallel training methods are applicable to different
datasets.

The above conclusions about scalability show that using
dataset statistical properties would give the researchers prior
information to determine which parallel optimization algorithm
would make full use of parallel computing resources, and break the

1. In minibatch SGD, each worker computes gradients on a portion of the
minibatch, and then the gradients are accumulated among the workers using
all-reduce. The maximum degree of parallelism is equal to the batch size.
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illusion that BigData&AlI applications with unlimited data would
always lead to a large scale computing environment.
Our main contributions are:

e We point out that the traditional parallel theories and
metrics are limited in estimating the scalability of parallel
machine learning training. Dataset statistical properties,
including variance of sample features, sample sparsity,
sample diversity, and similarity in sampling sequences,
should be used to analyze the scalability of the machine
learning training tasks.

e We design a set of measurement methods to describe the
parallel effect on parallel stochastic optimization methods,
and analyze the upper bound of scalability for four kinds
of training algorithms.

e We prove that there exsit a scalability upper bound which
is decided by the datasets’ statistical properties.. We also
prove that shuffling dataset would help the system reach a
better parallel effect.

2 RELATED WORKS
2.1 Current Scalability Problem

The current machine learning studies indeed have impressive
experimental results. Although there have been a lot of successful
parallel applications for machine learning training tasks [19] [18],
very few research efforts are exerted on the theoretical analysis of
the parallel scalability for machine learning tasks from the training
dataset perspective. Especially, why a parallel algorithm works
well for a specific machine learning task and whether a successful
application can be transferred to other tasks are not clear. Most of
the current large-scale machine learning works can be classified
into the following four types: 1. Some works focus on training
a specific machine learning model on a particular dataset. For
example, some researchers use a specific DNN training ImageNet
dataset, but their work cannot be applied to other machine learning
models and datasets [9] [12] [11] [14] [13]. These works often use
thousands of GPUs to train machine learning models. However,
they do not show that their scalability performance can be applied
to other DNNs and datasets [11], and all of their training methods
cannot be proven [9] [12] [13]. For example, Thorsten Kurth et
al [11] trained a Tiramisu and DeepLabv3+ CNN on a climate
atmosphere dataset. For some works, the theoretical convergence
result is not a tight upper bound [7], and their scalability perfor-
mance needs further research. 2. Some works use pipeline parallel
methods. The pipeline parallel method breaks objective functions,
such as DNN, into several pieces, and these pieces are computed in
a pipeline system [11]. Recent work by Igor Colin et al. [6] shows
that mathematically, only nonsmooth problems may benefit from
pipeline parallelization. However, in a machine learning model
training process, such as a DNN training process, the nonsmooth
objective function is still rare. To gain the gradient easily, most
of the nonsmooth parts of the objective functions are replaced by
smooth functions. For example, the step function is replaced by
the sigmoid function in DNN. 3. Large-scale computing is limited
in traditional math kernels in large-scale computing devices, such
as GPUs. Some works attempt to optimize math kernels, such
as matrix multiplication (GEMM kernel). For example, in the
work by S. Chetlur et al. [10] designed methods that GPUs use
to compute convolution operations. 4. For general cases, adding
more parallel computing resources to these machine learning
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frameworks makes it evident that the effect of these frameworks
does not improve too much. In the research by R. Anil et al
[8], they claim that it can be very difficult to scale effectively
much beyond a hundred GPU workers in realistic setups.” For
minibatch SGD, few works attempt to use settings with a batch
size larger than 32 K [9] on general-purpose machine learning
training system. What is more, many research works only use less
than 100 nodes in their experiment part [3]-[7].

Above facts show that there are a few works which are
successfully training general-purpose Al model in super-large
scale computing environments. However, with the increase of the
size of dataset, i.e. the increase of the training workload, it is a
matter of the utmost urgency to find why we cannot put more
computing resources and gain a better performance. Further, we
want to know which factors determine the maximum computing
resources a training process can use, i.e. the scalability.

2.2 Parallel SGD algorithms

SGD can be dated back to the early work of Robbins and
Monro [21]-[25]. In recent years, combined with the GPU and
clusters [26], [27], parallelized SGD has become the most pow-
erful weapon-solving machine learning problem [5], [7], [28]-
[32]. Asynchronous parallel SGD, such as Hogwild! [33] and
model average parallel SGD, such as minibatch SGD and simul
parallel SGD [34], are two popular parallel SGD variants. The
goal results for the asynchronous parallel SGD algorithm and
sequential SGD are the same in fixed iterations. Model average
parallel SGD algorithms provide the answer for how to calculate a
better output in a fixed number of iterations. Decentralized parallel
stochastic gradient descent [35] requires each node to exchange
its own stochastic gradient and update the parameters using the
information it receives [16].

2.3 Dual Coordinate Ascent Optimization

The stochastic dual coordinate ascent method (SDCA) [36] [37]
is one of the most important optimization methods. Its data
parallelism algorithms are a popular topic in the optimization
algorithm area [38] [39]. DADM [17], DisDCA [40], and CoCoA+
[41] are the state-of-the-art parallel dual coordinate optimization
algorithms.

2.4 The analysis of theoretical speedup

Many works try to give an analysis of the mathematical perfor-
mance of different algorithms. In these works, the authors give a
sharp analysis of stochastic optimization’s parallel performance:
Duchi et al. [42] show the parallel performance of sparse data on
asynchronous parallel and they also give the sharp analysis about
mini-batch SGD [43]. Kwangjun Ahn et al. give a sharp analysis
of the relationship between SGD convergence speed and shuffling
data [44]. Other researchers also focus on different stochastic
optimization algorithms’ mathematical properties, like stochastic
incremental methods.

However, these works mainly focus on a single mathematical
property on one algorithm [42], [43], [45]. They do not focus
on the parallel performance and list the different algorithms’
performance analysis from the view of the same mathematical
properties.

3 PROBLEM SETUP AND NOTATIONS

3.1 Problem Setting
An optimization method is used to solve the following minimum
problem:

mmf(x) =EzF(z;5)

where = is a random variable that satisfies a certain distribution.
In most cases, the distribution of = is unknown or cannot be
presented as a formula form. It is common that we use a frequency
histogram to replace =’s PDF. The above formula is written as:

minf(z) = E=F(;E) ~ f(z) =

3=

Y F(x:&) ()
i=1

where &; is the sample sampled from Z=. The collection of
{&1,8&2, ..., &n } is the dataset. In addition, * = argmin f(x).

For regularized risk minimization, in many cases, F' (:17; 51) is
presented as the following formula [34]:

F(z;6) = L&, x) + A(x)

L(&;, x) is the loss function, such as hinge loss for the SVM model
and logloss for the LR model, and ¢ () is the regulation function.
Usually, ¢(z) = $|z[/% ie.,

A
F(x;&) = L(&, ) + 5Hsc||2 )

3.2 Assumptions
3.2.1 Sample Uniformly Distributed Assumption

To make the analysis simple and clear, we make the assumption
that the distributions of the sample’s feature value and nonzero
feature’s position are uniform. As we can see, most of the datasets
satisfy this assumption. We have to use this assumption because,
without it, common definitions may blur the boundary between
different types of datasets, as shown in the following example.

Example 1. Considering the dataset: {(1 ,0,0...,0), (2,0,0...,0),
(3,0,0...,0) ... (dataset_size,0,0...,0)}, under the common defi-
nitions, this dataset is a sparse dataset. However, after deleting
unused features, the above dataset is a dense dataset.

3.2.2 The positive correlations between the mathematical
properties of stochastic gradient and samples

Although the specific functions between stochastic gradient and
samples are various and cannot be present in a unified form, it is
easy to see that the statistical mathematical properties of stochas-
tic gradient is positive correlated to the statistical methematical
properties of samples in dataset. These statistical mathematical
properties include sparsity, diversity, variance and so on.

This positive correlations is the base for us to map sample sta-
tistical properties into stochastic gradient properties in algorithm
analysis.

Example 2. For linear model like SVM and LR, the sparsity of
current sample is equal to the sparsity of model’s stochastic
gradient based on current sample. For convolution layer in
DNN, a sparse input is apt to produce a sparse backpropagation
gradient.
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3.23 CRCW PRAM model

First of all, we have to build a model where we measure the
speedup. We want to prove that the limitation of speedup is rooted
in the parallel stochastic optimization algorithm and dataset.
Therefore, to avoid the discussion of the code implementation,
parallel math kernel implementation and hardware setting, we
assume that the workers in a cluster have unlimited memory
and bandwidth in the network, which is CRCW PRAM model
in parallel research.

Iteration and time under the CRCW PRAM model. We also
conduct experiments under the CRCW PRAM model because it
is easy to map the number of system/parameters server iterations,
number;teration» to the real-time. For synchronous parallel algo-
rithms such as minibatch SGD, ECD-PSGD, and DADM, the time
for one iteration on a single worker (thread, CPU....) is t 45 41¢, and
the time for a system with m workers is ¢ si, g1 ¥NUMbETjteration-
For asynchronous parallel algorithms such as Hogwild!, the time
for one iteration on a single worker (CPU) is fgngie, and the
time for a system with m workers is ¢sipgie * W
Thus, in experiments, in regard to exhibiting the time consumption
performance under the CRCW PRAM model, it is enough to
exhibit the number of iterations.

3.3 Dataset Statistical Properties

3.3.1 The Local Similarity of Consecutive Samples in the
Sampling Sequence, i.e., LSA(D,S), for Different Algo-
rithms

We find that the similarity of consecutive samples in sampling
sequences is important because in online learning applications,
which often use SGD as their optimization method, rearranging
samples always leads to a better speedup performance. In an online
learning application, the samples in the sample sequence are often
similar to their neighborhood samples. For example, the online
sample from an advertisement click is similar to its neighborhood
because user interest cannot be changed drastically.

To make our presentation clear, we have to define the local
similarity, i.e., LS4 (D, S), for algorithm A on dataset D sam-
pling sequence S is used.

Before we define the local similarity of consecutive samples in
sampling sequences, i.e., LS 4(D, S), we have to define the value
of C_sim.

For a sampling sequence &1, &s....,&, and a range range,
Clim is defined as

1 Zn: Z;a:nllge_l ||€Z - g(iJrj)%lengthHO

C_Szmrange = -
range

(3)
s

where length is the sequence length.
For a sample collection {1, &3.., &, }, their different sampling

orders have different C_sim values.

Example 3. For datasets {(0,0,0), (0,0,1), (0,1,1), (0,1,0), (1,1,0),
and (1,0,0)}, the samples have 2 different C_sims sequences:
1. Sequence with C_sims=0.5: (0,0,0), (0,0,1), (0,1,1),
(0,1,0), (1,1,0), (1,0,0)
2. Sequence with C'_simo=1: (0,0,0), (1,1,0), (0,0,1), (1,0,0),
(0,1,0),(0,1,1)

Based on C_siMyqnge, we can define LS 4(D, S).
When A is an asynchronous SGD such as Hogwild!, tS is
£1,€9,..,&, & € D, and the lag between when a gradient is

4

computed and when it is used is always less than or equal to
Tmaz- Then, LSA(D,S) = C_sim,,__ onS.

When A is a synchronous algorithm, such as DADM,
minibatch SGD and ECD-PSGD, S is [£1, &, ..., Spateh,_sizes
[5batch_size+1’ fbatch_size+2’--’£2batch_size]7"" gi € D, where
the samples or gradients in [-] are in one batch. We use the
following two steps to calculate LS 4(D, S): 1, for the samples in
a batch, we find the sequence that consists of these samples. This
sequence’s C_siMpqtch_size 1S larger than that for any sequences
that consist of these samples. We name C_simpq¢ch_size for this
sequence C'_sim_batch. 2, for the whole sampling sequence S,
we choose the batch whose C_sim_batch is the maximum in S.
LS54(D,S) is this batch’s C_sim_batch.

3.3.2 Feature Variance and Sparsity

In this paper, we define the variance in feature k as

frg =~ S (k)
i=1

Foe = = 3 (E(R) — fm)?

i=1

where &;(k) is the k-th feature in &;, fm is the feature mean and
fu is the feature variance.

The sparsity is the rate between the number of zero elements
and the size of the sample. The density is 1— sparsity.

It is clear that when the dataset is sparse, the feature variance
must be small.

3.3.3 Diversity

The diversity is the number of different kinds of samples in the
dataset. We notice that the size of the dataset may be large, but the
dataset is the replication of several samples.

Diversity cannot be present by variance and sparsity. Thus, it
is necessary to use this metric to describe the sample difference. In
the following example, we show that low variance and low-density
datasets can still have high diversity.

Example 4. Low-density dataset whose sample size is large and
diversity is high: (1,0,0...,0), (0,1,0...,0), ..., (0,0,0...,1).

Example 5. The diversity of the low variance dataset
{(0.01),(0.02),(0.03)...,(0.99),(1)} is higher than the diver-
sity of the high variance dataset {(100),(-100),(100),(-
100)...,(100),(-100)}.

4 THEORETICAL ANALYSIS

Because the convergence analysis about different algorithms are
different and the upper bound analysis from different analysis
methods about the same algorithm is also various, for example,
the analysis about asynchronous parallel SGD in different works
[4], [5], [7], [15], it is impossible to gain the form about speedup’s
function even for a specific algorithm. Thus, we have to focus
on general mathematical properties about scalability and parallel
speedup.

4.1

Our direct conclusions are presented in introduction part. In this
part, we will show how to gain these conclusions.

Main Conclusion
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4.2 The Upper Bound of Scalability

4.2.1 The Method to Measure the Scalability of Machine
Learning Algorithm

Traditional definition of scalability cannot cover the situation of
machine learning training algorithm. Traditional definition of scal-
ability mainly focuses on the whole workload and the workload on
per worker. The total workload among different workers/threads
is usually a linear function with the number of workers/threads.
Strong scalability focuses on the change of workload per worker
when the whole workload is fixed. Weak scalability focuses on
the change of whole workload when the workload per worker is
fixed. And on CRCW PRAM, an ideal system, discussing scaling
efficiency is meaningless.

However, in machine parallel learning training algorithm, the
whole workload and the workload per worker are various depend-
ing on the number of workers: In two systems with the different
number of workers and the same parallel machine learning training
algorithm, we cannot expect that they can achieve the same
objective function value with the same amount of samples.

What is more, in practice, the targets of training process are
different: 1.Under the condition that training model into a fixed
accuracy, training time should be as short as possible. This case
suits the situation where the dataset and model are fixed, and the
model does not need to be update; 2. Under the condition that
training time is limited, the value of objective function should as
small as possible. This case suits the situation where the dataset
and model are dynamic and the model should be update frequently,
like advertisement recommend system.

Because of the unavailability of traditional scalability, we have
to redefine the scalability in parallel machine learning training
algorithm. Our scalability builds the relationship between the num-
ber of workers, system’s whole workload, workload per worker
and the value of objective function: By analogy with the definition
of strong scalability, we define the cost”: The cost is the number
of iterations for each worker when the system reaches convergence
point. By analogy with the definition of weak scalability, we define
the “gain”: The gain is the value of the objective function at
system’s a fixed iteration. To describe the scaling efficiency in
CRCW PRAM, we have to define new concepts, the gain-growth:
First gain-growth definition: The gain-growth is the difference
between the cost. Second gain-growth definition: the gain-growth
is the value of the objective function’s difference.

It is worth noting that in this definition, the second gain-growth
for ASGD is always negative. Following examples show how to
calculate two kinds of gain-growth in different algorithms.

Example 6. When the system uses a real-sim dataset and eight
equal performance workers on other stable algorithm settings
on the Hogwild! algorithm to train LR model, the server uses
6,242 iterations to reach the point of convergence. In this case,
the cost is the number of iterations for each worker: 6,242/8 =
781 iterations per worker. And at 1,497th iteration, the logloss
of the system is 0.2974. When the system uses the real-sim
dataset and nine equal performance workers, the server uses
6,497 iterations to reach the point of convergence. In this case,
the cost is the number of iterations per worker: 6,497/9 = 722
iterations per worker. And at 1,497th iteration, the logloss of
the system is 0.3057. Thus, the first gain-growth is 781 - 722 =
59 iterations. And the second gain-growth is 0.2974 - 0.3057
= -0.0082. As we can see from this example, although the
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server has to train more iterations, the number of iterations per
worker decreases.

Example 7. Using the HIGGS dataset, 2 workers and other stable
algorithm settings on the minibatch SGD algorithm to train
LR model, the server uses 106 iterations to reach the point of
convergence. In this case, the cost is the number of iterations
for each worker: 106 iterations per worker (the number of the
iteration for system is equal to the number of the iteration for
per worker in minibatch SGD). And at 50 server iterations, the
logloss for this model is 4.7525. Using the HIGGS dataset, 3
workers and other stable algorithm settings on the minibatch
SGD to train LR model, the server and each worker use 97
iterations to reach the point of convergence. And at 50 server
iterations, the logloss for this model is 4.5871. The first gain-
growth is 106 - 97 =9, and the second gain-growth is 4.7525—
4.5871 = 0.1654.

In fact, the above gain-growth definitions are two aspects
of one phenomenon. In practice, we can use them both in one
algorithm. Apparently, in one algorithm, the values of gain-growth
in the above situations are positively related.

However, we use the above two situations in our paper for
the following two reasons: 1. The proof methods for algorithms’
theory are different. Different algorithms are proven in different
aspects. It is easy to prove synchronous algorithms in second
situation and asynchronous algorithms for the first situation. So,
we kept them all. 2. In different presentation methods for exper-
imental data, the above two situations present different clarity:
the first case is appropriate for a table, and the second case is
appropriate for a chart (which can be shown easily by the gap
between different convergence curves).

Therefore, based on the above reasons, in theory, the upper
bounds of synchronous algorithms are defined as the second case,
and ASGD is defined as the first case. In experiments, chart results
are presented in the second case and table results for the first case.

4.2.2 The Theoretical Upper Bound of Algorithm Scalability

Based on the definition of gain and gain-growth, under the CRCW
PRAM model, the upper bound of algorithm scalability, 1,42,
describes the following two situations:

1. Under the CRCW PRAM model, with the increase number
of workers at the range [Mq0, inf], the second gain-growth is
positive but close to zero. In this case, the gain-growth does
not cover the parallel cost on a real computer. This situation is
appropriate for minibatch SGD, DADM, and ECD-PSGD.

Example 8. Using the real-sim dataset and other stable algo-
rithm settings on minibatch SGD, the second gain-growths
at 15,000 iterations are 0.0011, 0.0006, 0.0003, 0.0002, and
0.00018, matching the algorithm settings whose numbers of
workers/batch sizes are 14, 15, 16, 17, 18, and 19. As we can
see from this case, the gain-growth decreases (to zero). Thus,
when the growth cannot cover the parallel cost, the system
meets its speedup upper bound.

2. Under the CRCW PRAM model, with the increase number
of workers at the range [m,,,4., inf], the first gain growth is nega-
tive ( i.e., cost increases drastically). This situation is appropriate
for algorithms such as Hogwild!.

Example 9. when the system uses the HIGGS dataset and other

stable algorithm settings on the Hogwild! algorithm, the first
gain-growth is 14, 4, -7, -39, and -72, matching the algorithm
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settings whose number of workers is 3, 4, 5, 6, and 7. As we
can see from this case, the gain-growth decreases. Thus, when
the first gain-growth is negative, the system meets its speedup
upper bound.

4.3 Analysis Sketches

We offer a brief analysis in this part and whole analysis in
appendix.

4.3.1 Key Part in Different Algorithm’s Analysis

For different algorithms, their parallel principles are different.

For Hogwild!, the key part is the stochastic gradient’s feature
conflict during asynchronous parallel delay: At jth iteration, work-
ers pull model, calculate current stochastic gradient gradient;
and push stochastic gradient at system’s j+7th iteration. The more
gradient; shares non-zero features with other stochasic gradients
in T iterations, the more iterations the system has to use.

For mini-batch SGD and ECD-PSGD, the key part is the
variance of the machine learning model. The upper bound of the
loss function is positively related to the model variance.

For DADM, the key part is the sub-problem difference be-
tween different workers. The more different these sub-problems
are, the better the parallel effect of DADM is.

4.3.2 Applicability conclusion

Based on the key part of the proof, we show a brief theoretical
analysis introduction: For Hogwild!, the stochastic gradient spar-
sity makes less feature conflict. The sparsity of stochastic gradient
is positively related to the sparsity of the sample in the dataset;
For minibatch and ECD-PSGD, the stochastic gradient variance is
positively related to the sample variance in the dataset. The model
is the accumulation of stochastic gradient; For DADM, just as their
proof method shows, if two workers share the same sub-problem,
the parallel technology is invalid.

4.3.3 Sampling conclusion

Sampling conclusion is can also be conducted from the key part
of proof: For Hogwild!, if the value of LS4(D,S) is small,
the samples in sampling sequence would share a lot of non-zero
features with their neighborhood samples, which would lead to
conflict features. For ECD-PSGD and mini-batch SGD, if the
value of LS 4(D,S) is small, the variance of the sample is small
(because only a few features contribute variance), which leads to
the reduction of the model variance and low parallel efficiency.
For DADM, if the value of LS4(D,S) is small, the samples,
which are training in an iteration, are almost the same. The above
fact shows that the different workers are solving almost the same
sub-problems, which would negatively affect parallel technology.

4.3.4 Upper bound conclusion

The basic analysis method is to check the convergence lemma’s
change when the parallel variant is various. In Section 4.2, we
summarized two upper bound situations. In analysis, the main task
is to check how the algorithms reach the upper bound and which
factors influence the speed of algorithm reaching the upper bound.
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4.4 Parallel Machine Learning Training Algorithm and
Traditional Parallel Algorithm

In regard to the speedup of the algorithm, the current machine
learning training algorithm and traditional application show great
differences.

For traditional problems, we have the following claims.

1. The accuracy of the output is determined by the number of
grids. Usually, in many cases, these problems can be transferred
into linear algebra problems such as stencil and matrix multiplica-
tion. The larger the problem size, the more accurate the results.

Example 10. In stencil applications, such as atmosphere simula-
tion applications, the more grids we have, the more accurate
the results we can obtain.

2. The number of grids and problem size determine how many
workers this application can use, which is shown in Amdahl’s
Law. The upper bound of theoretical speedup and real computer
environment determine the real upper bound of speedup.

Example 11. When using multithread parallel methods to compute
a 10*10 vector inner product on a server, which consists
of 2 Intel ®) Xeon® CPU E5-2680 2.88 GHz, i.e., 20
cores together, we used approximately ten cores at most (the
upper bound of theoretical speedup). However, considering the
parallel cost, in a real situation, we only use one core to solve
this problem, i.e., the real upper bound of speedup.

However, for parallel stochastic optimization algorithms, we
make the following claims.

1. The accuracy of the output is determined by the size of the
dataset. Based on the asymptotics in statistics [46], in Eq. 1, if the
size of training dataset is larger, the gap between f(z) and f(x)
would be closer.

Example 12. In the real-sim dataset, the log loss on a test dataset of
the LR model, which is trained by part of the training dataset,
is higher than the LR model, which is trained by the whole
training dataset.

2. The statistical properties of the dataset influences the
characteristics of the machine learning model (objective function
in stochastic optimization problem). The mathematical properties
of the objective function determine the upper bound of speedup.
Usually, the size of the dataset may influence the upper bound
of speedup. However, the size of the dataset is not the decisive
element, as in the following example.

Example 13. One sample dataset: Considering the dataset that
only contains one sample, the size of the dataset can be any
number by duplicating this sample. However, the training
machine learning model on this dataset cannot be accelerated
by any parallel stochastic optimization algorithm.

5 EXPERIMENT
5.1 Experimental Setting
5.1.1 Dataset

We choose a sparse dataset with small feature variance: real-sim
dataset and a dense dataset with large feature variance: HIGGS
dataset. Detailed information about the above datasets is shown in
Table 1. Their suitable algorithms are shown in Figure 2. In all
cases, the dataset is randomly split into two parts: a training set
containing 80% of the dataset samples and a valid set containing
20% of the dataset samples.
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Table 1
Dataset information

dataset #size feature variance | density

#features
real-sim ( High

diversity dataset) 20,958 72,309

0,1) < 3%

HIGGS 28 11,000,000 (-4,3) 100%

Simulated Data
for Hogwild!
upper bound
experiments

20,958 - 0/1 70%

Simulated

Data: Small
LSA(D,S)
dense dataset

28/1000 - <9 100%

Simulated

Data: Large
LSA(D,S)
dense dataset

28/1000 - < 0.25 100%

Simulated
Data: Small
sparse dataset

20,958 - < 0.25 < 3%

Simulated

Data: Large
LS4(D,S)
sparse dataset

20,958 - < 0.25 < 3%

Part Real-sim
dataset (Low
diversity dataset)

20,958 72,309 < 0.25 < 3%

Part Real-sim
dataset (Middle
diversity dataset)

20,958 72,309 <0.25 < 3%

High Feature Variance

HIGGS

non-existent

Sparse Dense

Real-sim One Sample dataset

Low Feature Variance

Figure 2. The best performance dataset for different algorithms

To match our theory, we also build three groups (nine in
all) simulated datasets: (1) normal dataset for upper bound ex-
periments, (2) different LS4(D,S) datasets, and (3) different
sample diversity datasets. The samples in these datasets are
generated randomly, and the label is generated by the func-
tion label; = sign(&; - ruler), where ruler is the vector
(—1,2,-3,4..., (—1)sample-size  sample_size). The design of
simulated datasets subjects to the definition of LS4 (D,S) and
sample diversity.

Small LS4(D,S) dataset and large LS 4(D,S) dataset
The small LS 4(D, S) dataset and large LS 4(D, S) dataset are
used to match the LS4(D, S) related theory. All information is
shown in Table 1. All sample features in this group are sampled
from the same distribution. In the experiments, we use a uniform
distribution U (range_begin, range_end), where the range is
shown in Table 1.

In the LS 4(D, S) experiments, the size of the test dataset is
25% of the number of training data (20% in the whole dataset).
The data in the test data share the same feature distribution and
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density characteristic as the training data. In a small LS4 (D, S)
dense dataset, we name it as Di, the sample offered by the t-
th iteration is modified by the sample at the ¢ — 1-th iteration:
we randomly choose 30% features and randomly change these
features’ values. And we name the sampling sequence as S;. In
alarge LS4(D,S) dense dataset, Do, the sample offered by the
t-th iteration is modified by the sample at the ¢ — 1-th iteration:
we randomly choose 90% features and randomly change these
features’ values. And we name the sampling sequence as So. In a
small LS 4(D,S) sparse dataset, D3, the sample offered by the
t-th iteration is modified by the sample at the ¢ — 1-th iteration:
we randomly choose 30% features and randomly change these
features’ values. To make the sample sparse, we also randomly
pick some features and set them as zero, and the sparsity is
equal to the sparsity of the sample at the first iteration. And we
name the sampling sequence as Ss. In a large LS 4(D, S) sparse
dataset, D, the sample offered by the t-th iteration is modified
by the sample at the ¢ — 1-th iteration: we randomly choose 90%
features and randomly change these features’ values. To make
the sample sparse, we also randomly select some features and
set them as zero, and the sparsity is equal to the sparsity of the
sample at the first iteration. And we name the sampling sequence
as Sy. Apparently, for an algorithm A, we have LS 4(D1,S1) <
LS_A(DQ,SQ), and LS_A(Dg, 83) < LS_A(D4, 84)

As we can see from the above dataset design setting, when the
sparsity of the two datasets is the same and the size of the dataset
is large enough, the two datasets are the same.

Simulated dataset for upper bound experiments Our exper-
imental environment is poor, and it can only support 24 workers
at once.

The upper bound of Hogwild!’s speedup on real-sim dataset
exceeds the number of cores of our computing environment.
Therefore, we have to build a simulated dataset whose upper
bound of speedup is easy to reach. In our simulated dataset, the
density is 70%. The feature distribution is the same as LS A(D,S)
experiments. Other information is shown in Table 1. Because of
the limitation of the maximum number of workers, the DADM
experiments also have to build a dataset to match the experimental
results. In this experiment, we use a randomly selected 1/8 real-
sim dataset as our training dataset and a randomly picked 1/40
real-sim dataset as our test dataset. In scalability upper bound
experiments, the size of the test dataset is 20% of the number of
training data. The data in the test data only share the same feature
range and density characteristic with the training data.

Simulated dataset for sample diversity experiments Mea-
suring the sample diversity is a time-costing job. We only get
the diversity data about real-sim dataset, which is about 72250.
Thus, we use the following method to build three different sample
diversity datasets. The Real-sim dataset is the high diversity
dataset in the experiment.

We equally cut the real-sim dataset into 4 parts:

{sub_datasety, sub_datasets, sub_datasets, sub_datasety}

The sample diversity of the sub_dataset is lower than that of
the whole dataset. Thus, we build the middle diversity dataset,
abbr. real_simg, whose the diversity is about 36000, as follows:

{sub_dataset;, sub_datasety, sub_datasets, sub_datasets}

We also build the low sample diversity dataset, abbr. real_simy,
whose the diversity is about 18000, as follows:

{sub_dataset,, sub_datasety, sub_dataset, sub_dataset; }

Note: It is appropriate to using simulated dataset:(1) Some
statistical values are hard to control and we have a limitation of
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computing resources. In local similarity experiments, it is costly
to build two sequences that have remarkably different LS 4 in
one dataset. In diversity experiments, calculating diversity for
each dataset is also a time-costing job. (2) It is appropriate to
tease out the answer. It is hard to find two datasets that are
almost the same without target mathematical properties, which are
used in control variant experiments. Simulated datasets can build
almost the same datasets, and these datasets are only different in
target mathematical properties. Control variant experiments would
help experiments match theories. Thus, we had to build our own
experimental datasets.

5.1.2 Machine Learning Model

We, of course, know that using a popular machine learning model,
such as CNN or DNN, can make our paper extremely impressive.
However, the mathematical properties of a complex machine
learning model, such as CNN or DNN, are unknown and unstable.
If we use CNN or DNN as our experimental machine learning
model, there will be a question of whether the reasons for our
experimental results are unknown mathematical properties or the
properties that are offered in our paper. Thus, it is necessary to
use a safe and transparent machine learning model with known
mathematical properties.

In our experiment, we solve the problem of training the L2
norm logistic regression model because the log loss function
is applicable to all requirements that are asked by Hogwild!,
minibatch SGD, DADM, and ECD-PSGD. Moreover, the L2 norm
logistic regression model is currently the mainstream machine
learning model used in advertisement recommendation tasks.

The logistic loss function is shown in Eq. 4.

I 2
- P(lable; x &; - A2 4
arg;mnnz (lable; * §; - x) + A/2||z|| )

i=1

where ® is the logistic loss, i.e., ®(t) = log(1 + e~ *) and A\ =
0.01.

5.1.3 Model’'s Measurement and Evaluation

In the feature variance and sparsity experiment, diversity experi-
ment and LS 4(D,S) experiment, we use gain to indicate gain-
growth.

In these experiments, because of the CRCW PRAM model,
we show the convergence curve on the figure whose X-axis is the
number of iterations, and the Y-axis is the logloss. In our figure,
the gap can indicate the effect of parallel technology. The upper
bound of algorithm speedup has two situations. Therefore, dif-
ferent algorithms have different metrics to determine the speedup
effect of the parallel algorithm.

For ASGD, i.e., Hogwild!, the effect is better when the gap
is smaller, for ASGD’s second gain-growth definition is always
negative. When the gap is small, the number of system iterations
to reach a fixed e is stable when increasing the number of workers.
Then, the number of iterations in each worker decreases. For ECD-
PSGD, DADM and minibatch SGD, the effect is better when the
gap is large because the synchronous first gain-growth definition
is always positive. When the gap is large, at the fixed iteration, the
log loss from a particular algorithm worker setting is smaller.

In upper bound experiments, we use cost to indicate gain-
growth in table form. In our upper bound experiments, the itera-
tions per worker can indicate the upper bound of speedup.

5.2 Feature Variance and Sparsity Experiment
5.2.1 Algorithm Setting

In this experiment, we run HIGGS and real-sim on different
algorithms to make the comparison.

In Hogwild!, the learning rate is 0.1. In the minibatch SGD
and ECD-PSGD, learning rates are 0.1. In Hogwild! experiments
on the HIGGS dataset, to gain a stable curve, we set the minibatch
as 4. In the ECD-PSGD experiment, we connect all workers into
aring, and we do not compress the data.

5.2.2 Experimental Results and Experimental analysis

The experimental results are shown in Figure 3, 5, 4. In our feature
variance and sparsity experiment, our experimental results match
well with the theoretical analysis: Our experimental results match
the Figure 1. (1) In minibatch SGD and ECD-PSGD, the parallel
effect is remarkable for the large variance dataset (HIGGS). Large
batch setting minibatch SGD converges faster. However, for the
sparse dataset (real-sim), the parallel technology does not exert
any influence on the convergence speed. For ECD-PSGD, parallel
technology has a negative impact. (2) For the ASGD algorithm,
i.e., Hogwild!, with the increase number of workers, the influence
on convergence speed is minor on the sparse dataset. The iteration
number on each workers decrease linearly. However, for the fea-
ture variance dataset (HIGGS), the convergence speed drastically
decreases, which means that the iteration number on each worker
is not obviously reduced. In some cases, the iteration number on
each worker increases as the number of workers increases.

HIGGS on mini-batch SGD Real-sim on mini-batch SGD

10 —— 1worker 08 Iworker

—— 2workers

= Tvoxkers 06
8workers P
16wrokers 8
02 .

1 5000 10000 15000 20000 25000 30000 35000 40000

—— 2workers
aworkers
8workers
16workers

Log Loss

o N & o ®

1 10 20 30 40 50 60 70 80 90 100
Iteration

(a) HIGGS on minibatch SGD

Iterations

(b) Real-sim on minibatch SGD

Figure 3. The performance of different datasets on minibatch SGD.

Real-sim on ECD-PSGD HIGGS on ECP-PSGD

1worker
~—— 2worker

0.68 = 1worker 0.698
\ 2worker 0.69
., 060 . aworker  0.694 — aworker
i 0.64 Sworker 8 602 Sworker
¥ — Z6worker & e 16worker
0.62 .
0.688

= ==
0.6 0.686

1 200 400 600 800 1000 1200 1400 1600 1800

Iteration Iteration

(a) Real-sim on ECP-PSGD (b) HIGGS on ECD-PSGD

Figure 4. The performance of different datasets on ECD-PSGD.

5.3 Sample Diversity Experiment
5.3.1 Algorithm Setting

To present our experiments clearly, we use 1 worker to 16 workers
to train the real_sim, real_sims and real_simy datasets. In each
worker, the minibatch size is one.
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Real-sim on Hogwild! HIGGS on Hogwild!
0.8 —— 1worker 8 —— 1worker
— 2workers —— 2workers

o6 aworkers .6 \ Aworkers
g 8workers Sy rs
o 04 = SN
35 ‘\ ~—— 16workers 3 - —— 16workers

02 \. 2 S~

—— - —

0
1 5000 10000 15000 20000 25000 30000 35000 40000 1 10 20 30 40 50 60 70 80 90 100

Iteration Iteration

(a) Real-sim on Hogwild! (b) HIGGS on Hogwild!

Figure 5. The performance of different datasets on Hogwild!. In this
case, the effect is better when the gap is small. The number of iterations
for the server to reach a fixed ¢ is stable when increase the number of
workers. Then, the number of iterations in each worker will decrease.

Real-sim on DADM Real-sim2 on DADM

—— 1worker — 1worker
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063 063
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~—~——
0.61 e 0.61
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
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(a) Real-sim dataset on DADM (b) Real-simg dataset on DADM

Real-sims on DADM
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I——

0 10000 20000 30000 40000 50000
Iteration

(c) Real-simy dataset on DADM

Figure 6. The performance of different sample diversity datasets on
DADM. The gap order is Real-sim > Real-simy > Real-sim4, which
means parallel effect (second gain-growth) order is Real-sim > Real-
simg > Real-simy

5.3.2 Experimental Results and Experimental analysis

The experimental results are shown in Figure 6. In our sample
diversity experiment, our experimental results match well with
the theoretical analysis: high sample diversity leads to better
scalability. In DADM, when sample diversity is large, at the same
iteration, we can obtain more gain-growth: the gap between the
different lines is large.

In this experiment part, the absolutely convergence speeds are
not comparability: The training dataset they use are different,
which means their objective functions are different. The same
algorithm would show the different performance on different
problems.

What we want to compare is the gap between different con-
vergence lines. The gap indicates that the benefit which we gain
from the parallel. The larger the gap between different curves is,
the higher the parallel efficiency is.

5.4 LS4(D,S) Experiment
5.4.1 Algorithm Setting

The algorithm setting in this section is the same as the feature vari-
ance and sparsity section. The above sections show that different
datasets suit different algorithms; we only present 1. Sparse dataset
for Hogwild! 2. Feature variance dataset for minibatch SGD
(#feature is 28) and ECD-PSGD (#feature is 1000). In Hogwild!
and the DADM experiment, the first sample is sampled from
the real-sim dataset. In the minibatch SGD experiment, the first
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sample is sampled from the HIGGS dataset. In the ECD-PSGD
experiment, we use our first sample to make the gap between
different curves large, and the size of this sample is 1,000.

5.4.2 Experimental Results and Experimental Analysis

Large LSiDense Dataset Small LS:Dense Dataset

25 ~—— batchsize2 25 —— batchsize2
batchsize8 e W batchsize8
a2 batchsize16 2 — batchsize16
Sis 2 .
w" ) &1s L, e—
= = :On 1 _
05 05
0 0
1 5 o 15 20 25 26 30 1 5 10 15 20 25 2 30
Iteration Iteration

dataset on (b) Small LS4 (D,S) dataset on
minibatch SGD

(a) Large LS4(D,S)
minibatch SGD

Figure 7. The performance of different LS 4(D,S) datasets on mini-
batch SGD.

Large C_sim on ECD-PSGD Small C_sim dataset on ECD-PSGD
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(a) Large LS4(D,S) dataset on

ECD-PSGD

dataset on (b) small LS4(D,S)
ECD-PSGD

Figure 8. The performance of different LS 4(D, S) datasets on ECD-
PSGD.

Large LS. sparse Dataset Small LS. sparse dataset
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(a) Large LS4(D,S)
Hogwild!
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Figure 9. The performance of different LS 4(D,S) datasets on Hog-
wild!.In this case, the effect is better when the gap is small. The number
of iterations for the server to reach a fixed ¢ is stable when increase
the number of workers. Then, the number of iterations in each worker
decreases.

Large LSa Dataset on DADM Small LSa Dataset on DADM
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Figure 10. The performance of different LS 4 (D, S) datasets on DADM.

The experimental results are shown in Figures 7, 8,9 and 10.
In our LS4(D,S) experiment, our experimental results match
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well with the theoretical analysis: a large LS 4(D, S) value leads
to better scalability. In minibatch SGD, DADM and ECD-PSGD,
when LS 4(D, S) is large, at the same iteration, the more gain-
growth we can obtain: the gap between the different lines is
large. For the ASGD algorithm, i.e., Hogwild!, when LS 4(D, S)
is large, we can obtain more gain-growth: the gap between the
different lines is small, which means that each worker trains fewer
iterations.

5.5 Speedup Upper Bound Experiment
5.5.1 Algorithm Setting

The algorithm setting in this section is the same as the feature
variance and sparsity section. The above sections show that
different datasets are applicable to different algorithms; we only
present 1 sparse dataset for the Hogwild! feature variance dataset
for minibatch SGD and ECD-PSGD.

Our experimental environment cannot reach the upper bound
of speedup of the real-sim dataset: our experimental environment
supports only twenty-four threads (workers) in all. Thus, in the
Hogwild! experiment, we use a simulated dataset. In the minibatch
SGD and ECD-PSGD experiments, we use the HIGGS dataset.

5.5.2 Experimental Results and Experimental Analysis

Table 2
The iteration per worker for different algorithms.

. 2 work- | 4 work- | 8 work- 16 24

Algorithm
ers ers ers workers workers

Hogwild! | 376 321 356 412 -
minibatch | 91 87 71 69 -
ECD-
PSGD 1654 1621 1623 1648 -
DADM 22596 11421 6258 4064 3972

The results are shown in Table 2. The upper bound is between
two bold values. In Table 2, we show that the different algorithms
have their upper bound speedup, which is highlighted in bold in
Table 2, even using their best performance dataset. Based on our
analysis in Section 4.2, the gain-growth for Hogwild! is negative.
For ECD-PSGD and minibatch SGD, the growth is close to zero.
Thus, in the range that we marked, the algorithms meet their
speedup upper bounds.

6 CONCLUSION

Based on our analysis and experiments, we draw the following
conclusion about Speedup function’s general mathematical prop-
erties and gain following conclusions: 1. Different datasets are
applicable to different parallel stochastic optimization algorithms.
2. Before training a machine learning model, rearranging the
dataset is an ideal choice. 3. Regardless of which parallel stochas-
tic optimization algorithm is used, there always exists an upper
bound of speedup. 4. The scalability performance for a certain
dataset on a specific machine learning model cannot be applied to
other cases.

It is worthy to note that some machine learning models, like
CNN or DNN, do not obey the convex, Lipschitz, or continuity
requirements. Thus, the scalability of the algorithm on these
models is needed to be studied further.
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APPENDIX
6.1 Notes and Symbols

To make our present clearly, we summarize the algorithm descrip-
tions common notes and symbols here. 1 is the number of sample
in dataset. m is the number of worker. v is the learning rate. A
is the regularization coefficient. G¢,(x) and VF(x;¢&;) are the
sub-gradient of function F'(x;&;). To make reader easy to match
the algorithm descriptions in their original paper, we keep them
all in our algorithm descriptions. () is the collection of samples
which are in a mini-batch. batch_size is the number of () and
local_batch_size is the number of (Q;,cq; Which is the mini-
batch in a worker.

To make our presentation clearly, in algorithm theory analysis
parts, we omit non-relevant parameters in these following lemmas
and theorems. In algorithm theory analysis parts, h;(-) are the
functions which only contains the parameters which are related
to the machine learning model, initial value xy and algorithm
parameter like A and . h;(+) do not care about the characteristic
of datasets and how many nodes we will use, i.e. the value of m.

6.2 Hogwild!
6.2.1 Algorithm Description

Hogwild! is the most important asynchronous parallel SGD algo-
rithm. Hogwild! is the base of current machine learning frame:
Parameter Server framework.

The Algorithm 1 is the description of Hogwild!. It is worthy
to mention that F'(z;£) is not the loss function directly. F'(x; &)
should be written as hypergraph form [15].

Algorithm 1 Hogwild!
In: 1 Server, m worker, random delay 7 ( 0 < 7T < Timaz),
learning rate y
Out: z*, which is the argmin of f(z)

WORKER:
repeat
1. Pick sample &; from dataset;
2. Pull Model x; from Server;
3. Compute G, (x;), which is the sub-gradient of F'(z;&;)
4. Push G¢, () into Server.
until Forever

SERVER:

repeat
1. Receive G¢, (z;—-) from any worker.
2. Tjy1 =25 + ’}/G&. (.I‘j_T)

until Forever

3. Return z*

6.2.2 Theorem Analysis

Firstly, we present a necessary conclusion which builds the
connection between the number of workers and the lag(delay)
between when a gradient is computed and when it is used in
Parameter Server Framework.

Theorem 1. The minimum of the maximum of 7 is the number
of workers, i.e. m < Ty,q2. And when all workers share the
same performance, the system would achieve the minimum.
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Proof 1. In a M worker cluster, for slowest worker, at th iteration,
this slowest worker submit its gradient to server, At this time,
other workers is in computing their gradient. at ¢+ jth iteration,
the slowest workers submit its gradient again. At this time,
other workers is already submit at least one gradient in j
iterations, i.e. § > M. Thus, an asynchronous parallel system
at least has M iteration delay. And when all workers share the
same performance, the system would achieve the minimum.

The convergence analysis of Hogwild! is shown in Theorem 2.
This theorem is transformed theorem from the Niu et al. ’s work
[15].

Theorem 2. Suppose in Algorithm 1 that the lag, i.e. 7, which
is between when a gradient is computed and when it is used,
is always less than or equal to T,,4,, and -y is under certain
condition. for some € > 0.When ¢ is an integer satisfying

t > (14 6Tmaup + 672,,Q9042)Q0(€)

Then after ¢ component updates of z, we have E[f(x;) —
f(z*)] < e. h(e) is only influenced by the characteristic of
f(+) and initial value x.

In Theorem 2, p is the probability that any two G, (x;) and
Ge, () have the same nonzero value at the same feature; 2 is
the max number of nonzero feature in G¢(x); 0 is simply the
maximum frequency that any feature appears in G¢ ().

Sparsity and Feature variance As we can see, when each
worker shares the same performance, each worker needs to train
t/m = (1/m + 6p + 6mQ5*/?)Qh(e) which means with the
increasing of the number of workers, each worker may have
to exert more iterations. To make each workers training less
iteration with increasing the number of workers, the €26 1/2 should
be extremely small: When m is large enough, we expect that
1/(mA41)+6(m+1)Q8"/2 < 1/m+6mQ§'/2, which means we
can gain benefit when we use more resource, i.e. a good algorithm
scalability. Above facts show that the scalability of Hogwild is
controlled by the value Q5'/2.

When we decide which machine learning model we use, the
sparsity of dataset is the only factor which influences the 2 and 6.
From the definition of €2, § and p, we can gain conclude that 2, §
and the sparsity of G¢(z) is a positive correlation. For common
machine learning model, like SVM, LR, neural network, the
relationship between the sparsity of samples in a dataset and the
sparsity of G¢(z) is clearly and significantly positive correlation.
Especially, when machine learning models are linear models like
SVM and LR, the sparsity of G¢, () is equal to the sparsity of ;.

Above conclusion is also shown in other ASGD algorithms
convergence analysis like delay-tolerate ASGD and quantization
ASGD.

Theorem 2 shows that feature variance plays no influence on
algorithm scalability. However, when the dataset is sparse, the
feature variance must be low: for any feature, in most samples in
the dataset, this feature is zero.

The influence of LS 4(D,S) The influence of LS4(D,S)
is buried in the proof of Theorem 2. The conclusion is that
LS4(D,S) is positively correlated to the scalability. The proof
of this part we put in Appendix part for this part needs to cite a
lot of proof context from the work [15].

In the Hogwild! proof, the 7 is created in A8 and A6 parts
in the appendix of the work [15]. In these equations, 6,2, p are
created by the sum of multiplication of gradient G¢, or model
difference (x; - xy(;), which can be described as Ge,). The sum
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range is &; to &;_,. Above facts show that the original definition
0,€), p is large: it is unnecessary to calculate these parameters
in whole dataset. just it is better define these parameters server
in sample sequence neighborhood 7,,,; samples sub-dataset: If
we define 6,2, p as Sjocals Qocal, Plocal, Which is calculated in
sample sequence neighborhood 7,,,, samples sub-dataset and
replace 4, 2, p in Hogwild! proof, the whole proof of Hogwild!
is still sound. So, we find a tighter upper bound of Hogwild!
algorithm.

As we can see from the definition, when LSA(D,S) is
small, d;ocal, Qiocals Plocal 18 also small, which would increase
the scalability ability.

The upper bound of scalability From Theorem 2, we
draw the scalability upper bound which is decided by the
characteristic of dataset. To make time faster, at least each
worker should train less sample compared with one worker, i.e.
1/m + 6mQs/? < 1/14 6 % 1 x Q5'/2. However, the function
constantix + constantg/x (constanty, constanty > 0) is
increasing function when x is large enough. Thus the maximum of
m, which satisfies 1/m 4+ 6mQd5'/2 < 1/14 6% 1% Q62 is the
maximum number of worker we can use in Hogwild!. The upper
bound of Hogwild! scalability suits second situation in Section 4.2.

6.3 mini-batch SGD algorithm

6.3.1 Algorithm Description

Mini-batch SGD algorithm is the most critical data-parallel SGD
algorithm. Nowadays, mini-batch SGD is the main parallel method

which is implemented in the supercomputer.
Algorithm 2 is the description of mini-batch SGD algorithm.

Algorithm 2 Mini-batch SGD algorithm

In: 1 Server, batch_size Workers, learning rate ~y
Out: z*, which is the argmin of f(x)

WORKER:
for Forever do
1. Pick sample &; from dataset;
2. Receive x; from Server
3. Compute Gg, (x;), which is the sub-gradient of F'(z;;&;)
4.Push G¢, () into Server.
end for

SERVER:
for Forever do
1. All-gather G, (), Ge, (%)), s Geporonoine (T5) from
workery, workers, , ,wOTk@Tbatcthiz.;l '
2. Compute Ggpe(z;) = W Sovateh-size G ()
3. 2541 =25 + YGave(T;
end for
4. Return x*

6.3.2 Theorem Analysis

Again, we present the basic fact which builds the connection with

the degree of parallelism and batch size. The following fact is

valid.

Fact 1. In Algorithm 2, the upper bound of the number of workers
is the batch size.

To make our presentation clear, we show our theorem about
the convergence of the mini-batch SGD algorithm:
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Theorem 3. When objective function Eq. 2 is running on Algo-
rithm 2, then we have

]EztEth(xt) - f(.’L'*) <
op+ +Wasa(D°, D*)(1 —y\)*

(002 (7 ) (s ) +

(batch_size)t/?
s (F ()

where D? is the distribution of ¥, D* is the distribution of

x*, op is the standard deviation of distribution D, up is the
mean of distribution D. Wasa (D1, D) is the Wasserstein
metrics between D4 and Ds.

Proof 2. Based on the work by M.Zinkevich et al [34], we treat x;
as random variable firstly and its distribution is D;. We have
following theorem (Theorem 11 in M.Zinkevich [34]) Given a
cost function f such that || f||, and||V f]| (|||, is Lipschitz
seminorm ) are bounded, a distribution D such that op and is
bounded , then ,for any v

Evep[f(x)] = min f(x) <
(Wa(v, D))\ 2V [, (f(v) = min f(z))
+ V£l (Walv, D))*/2+ (f(v) = min f(x))

&)

When v = pup+ Wa(up«, D) is the relative standard devia-
tion of z; with respect to fip+, i.e. 5P
Based on Theorem 32 in M.Zinkevich et al [34], we know that

op”" < op+d(ppe, pp) 6)
opt < op- +W(D*,D%)(1 - \y)* (7)

Suppose that random variable X', X2 X3 .. XF are inde-
pendent and identically distributed. if A = % Zle Xt itis
the case that:

HA = HUx1 = x2 = ... = Uxk

gx1
Vk

As we can see from z;, before average operation, 1% is
independent and identically distributed random variable. In
each iteration, o p¢ is shrinked Combining above
equations, we can get theorem.

oa <

1
batch_size"

Sparsity and Feature variance When dataset and machine
learning model are chosen, DY and D* would be determined.
For most of the cases, the z* is a fixed number. The value
of Wasa(D®, D*) is determined by the characteristic of D°:
Based on the definition of Wasserstein metrics, we can know that
Waso(DP, D*) is positive correlative to the variance of D°. Tt is
evident that when a machine learning model is determined, sample
variance is positively correlated with the variance of D°. Thus,
when sample variance is significant, the gain, which is brought by
parallel, is remarkable.

The feature variance is positively correlated with sample
variance. Thus, the dataset with higher feature variance is suited to
mini-batch SGD. Although the Theorem 3 do not show the effect
of the sample sparsity, yet we know that the feature variance is
negatively correlated to sample sparsity. Thus, sparse datasets do
not suit mini-batch SGD.

)
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The influence of LS4(D,S) In this algorithm, the
sample sequence we discuss is the sequence which build by
the sample batch and we pick the sequence which can build
the maximum LS4(D,S). For example, in Algorithm 2,
batch_size is 3 and the sequence of server received Gg(x) is
{G51 (x1)7 sz (xl)v GfS (xl)}’{sz; (xQ)’ Gfs (1‘2), G56 (332)},...,
{G§3t—2 (xt)’ G£3t—1€2 (xt)7 G€3t (th)}, where the sample or
gradient in {-,-,-} is in on batch. Then, the LS4(D,S) for
mini-batch SGD algorithm is the LS (D, S) for &;,&i+1,&ito
and &;,&;+1,&i42 can build a sequence whose LS 4(D,S) is the
maximum in all batches.

LS4(D,S) is small means that, at every iteration, most
feature do not gain more information from a batch, i.e. mini-batch
SGD is invalid at the most feature in every iteration. Above fact
suggest that when LS 4(D, S) is small, the parallel effect is poor.

The upper bound of scalability As we can see from Theorem
2, the gain at t-th iteration offered by parallel is Thatch_size)t
which means that the gain growth is decreasing with the increasing
of batch_size. Although in theory, enlarging batch_size always
gains more profit, yet the gain growths are small when batch_size
is large enough. When the gains cannot cover the parallel cost, the
scalability reaches its upper bound. The upper bound of mini-batch
SGD scalability suits first situation in Section 4.2.

6.4 DADM
6.4.1 Algorithm Description

DADM [17] depends on dual ascent method to gain a minimum of
f(x). The DADM can be treated as the mini-batched SDCA algo-
rithm. DADM selected an intermediate variable to help different
components of mini-batch are computed in the different node in a
cluster.

The full version of DADM can be complex, and it tries to solve
the objective function which contains three parts. However, when
it comes to the common machine learning problem, the algorithm
is presented in a simple form, like Algorithm 3. In Algorithm 3,
L(x;€) is the loss function. L* and ¢* is the convex conjugate
function of F' and v. q; is the dual variables. To make our present
clearly, we omit some explanations. Some notes are different with
the original algorithm description [17]. Again, in this paper, our
target is not showing every detail of the algorithm. We focus on
algorithm scalability performance.

6.4.2 Theorem Analysis

The parallel influence on parallel stochastic gradient algorithm is
reflected in the parameters in the theorem. However, DADM uses
different proof structure to offer the convergence conclusion. In
the proof of DADM: different workers solve a local problem, i.e.
fi(x) in Eq. 10 at each iteration and then broadcast its information
to other workers to solve globe problem f(x) in Eq. 9. What
is more, DADM is to find the expected duality gap. Thus, the
convergence analysis conclusion is unrelated to a dataset and
machine learning model character, and the parallel influence is
buried in the problem setting instead of directly convergence
theorem. The convergence theorem about DADM is the conclusion
from the work [17].

Theorem 4. f(-) , & and Aqqueq satisfy some requirements.
When ¢ satisfies following condition, the expected duality gap
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Algorithm 3 DADM

In: 1 Server, m Workers, batch_size = nxlocal_batch_size
, learning rate , 041:1)0:0
Out: z*, which is the argmin of f(z)

WORKER:
for t=1,2,...,forever do
1. Pick local_batch_size samples as Qocals &jy> Ejp -
gjlocal_batch_size € Qlocal from dataset;
2. Receive Avt~! from Server
t—1
3. Ufocal = Ulocal + Av
4. Approximately maximize Eq. 8,w.r.t Aq;

Ao, .., = argmin Z —L* (=™ — Aq)
YQlocal 1€Q 0eal

ZiGQlocal §i - Ay

*x( t—1
- )‘w (Ulocal + /\n/m ) (8)
5. Send Avj, .., = % D icQuen Si A
end for
SERVER:

for t=1,2,....Forever do
1. All-gather Av}, ., ; from worker;(i = 1,2...,m)
2. Compute Avt = L3 Ao}
3. Broadcast Av? to all workers -

end for

4. Return z* = Vy*(v)

of objective function and its dual form is smaller than €

! >zOg(<h5<fi7 )

local_batch_size x m

)h6($0,€)>

1
local_batch_size x m

Sample Diversity As we can see from the proof, the primary
purpose of parallel technology is to cut the original problem into
several subproblems. Thus, from the aspect of subproblem, the
parallel algorithm will fail to accelerate the algorithm when some
nodes solve the same problem. To ensure different nodes solve
different subproblem, we should ensure dataset is high sample
diversity. For example, when a dataset consists of little kinds of
the sample, i.e. the dataset is the replication of a little sample,
the sub-dataset in each node in the cluster would be almost the
same, which means f;(z), Vi in Eq. 10 are the same. In this case,
DADM fails to make full use of multi-nodes. Thus, we can know
that DADM is apt to accelerate the dataset whose sample diversity
is high.

The influence of LS 4(D,S) The influence of similarity is
hard to be shown in theory analysis. However, from Algorithm 3
description step 2 in SERVER part, we can observe that using the
definition of LS 4(D, S) in mini-batch SGD, when LS 4(D, S) is
small, v}, ;s from a different worker would be almost the same,
which would decrease the influence of parallel. Above fact suggest
that when LS 4(D, S) is small, the parallel effect is poor.

The upper bound of scalability Again, the upper bound of
scalability for DADM shares the same characteristics with mini-
batch SGD. As the mini-batch SGD, the profit offered by parallel
is 1/m, which means that the gain growth is decreasing with
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the increasing of m. Although in theory, enlarging m always
gains more profit, yet the gain growths are small when m is
large enough. When the gains cannot cover the parallel cost, the
scalability reaches its upper bound. The upper bound of DADM
scalability suits first situation in Section 4.2.

6.5 ECD-PSGD
6.5.1 Algorithm Description

Decentralization and compression stochastic gradient methods are
a new hot topic. To reduce the burden of the network, different
workers send compressed information to neighbourhood workers.
Then, they average their models.

We choose one of the states of the art decentralization and
quantization SGD algorithm: ECD-PSGD [16] as our example. In
ECP-PSGD, we will show how datasets influence the algorithm
scalability.

The description of ECP-PSGD is shown in Algorithm 4.
Again, we still omit some explanations. We only offer a basic
version of ECD-PSGD algorithm: all nodes share the same amount
of data, and all nodes share the same weight. In this algorithm
description, 2 is the model in ith worker. The worker weight
and network are described by matrix W. W, ; is the element in
W’sirow and j columnand 1 = >, W, ; = 1. The connected
neighbours of one worker ¢ here refers to all workers that satisfy
Wi7 g 75 0.

Algorithm 4 ECD-PSGD
In: m Workers, Weighted and network matrix My, learning
rate -, initial point 2} = z¢, initial intermediate variable y(i) =
Lo
Out: z*, which is the argmin of f(x)

WORKER:

for t=1,2,...,forever do
1. Pick a sample &; from dataset;
2. Compute a local stochastic gradient based on &;:
VF (371: i &)
3. Pull compressed y(j ) as Q(j) from neighbors worker and
compute

:Ct+1 —ZMWZJA()
7=1

Update local model
Ty41 = Tyq L — ’YAF(xt aff)
4. Each worker compute the z-value of itself:
A = (- t/2)f) + 2o,

and compress zt(_gl into C(ZH_I)

5. Each worker update intermediate variable for its connected

neighbors:
s = =2/ + 20GE)
end for ‘
6. Output:z™ = = 37 2()
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6.5.2 Theorem Analysis

To present the convergence analysis of Algorithm 4, we have to
rewrite the objective function in to following form.

1 n
fl@) = 5 2 Flit)
m Niocal
= — F(x;& 5 9
Z nlocal lz:; (xafl,]) ( )
And we also define followmg notes:
1 Niocal
filz) = F(a:5) (10)
Niocal i—0
T = 1 i ()
n 4

22— Y [VF@&) - V@),V
local =1
¢ > Vi) - f@)) Ve
=1

E (C(zt(z)) — z,gl)) =0,Vz,Vt,Vi

7 > 28 [C () - 27 ’

Vo, Vt, Vi
For Algorithm 4, Hanlin T et al. [16] gives following convergence

theorem.
Theorem 5. In Algorithm 4, choosing an appropriate -y, it admits

—ZEHW

&52109T+ ¢%/362logT
myvm mT\/T

<
)l vmT
an

As we can see from Algorithm 4, ECP-PSGD can be treated
as the variant of mini-batch SGD: When the network W is fully
connected, x = C(z),t — inf, ECD-PSGD degenerates into
mini-batch SGD. Thus, ECD-PSGD inherits the characteristic of
mini-batch SGD.

Sparsity and Feature variance Following mini-batch SGD,
ECD-PSGD is apt to accelerate the dataset whose variance is large
(and the dataset is dense). What is more, the m is also related to
o, which means the ECD-PSGD is apt to accelerate the dataset,
which would lose their a lot accurate during compress process.

The influence of LS 4(D,S) The influence of similarity is
the same with mini-batch SGD.

The upper bound of scalability Again, the upper bound of
scalability for ECD-PSGD shares the same characteristics with
mini-batch SGD. As the mini-batch SGD, the profit offered by
parallel is 1//m, which means that the gain growth is decreasing
with the increasing of m. Although in theory, enlarging m always
gains more profit, yet the gain growths are small when m is
large enough. When the gains cannot cover the parallel cost, the
scalability reaches its upper bound. The upper bound of ECD-
PSGD scalability suits first situation in Section 4.2.

h4(&7 Ca T)



