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Cache-oblivious MPI all-to-all communications
based on Morton order
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Abstract—Many-core systems with a rapidly increasing number of cores pose a significant challenge to parallel applications to use
their complex memory hierarchies efficiently. Many such applications rely on collective communications in performance-critical phases,
which become a bottleneck if they are not optimized. We address this issue by proposing cache-oblivious algorithms for MPI Alltoall,
MPI Allgather, and the MPI neighborhood collectives to exploit the data locality. To implement the cache-oblivious algorithms, we
allocate the send and receive buffers on a shared heap and use Morton order to guide the memory copies. Our analysis shows that our
algorithm for MPI Alltoall is asymptotically optimal. We show an extension to our algorithms to minimize the communication distance
on NUMA systems while maintaining optimality within each socket. We further demonstrate how the cache-oblivious algorithms can be
applied to multi-node machines. Experiments are conducted on different many-core architectures. For MPI Alltoall, our implementation
achieves on average 1.40X speedup over the naive implementation based on shared heap for small and medium block sizes (less than
16 KB) on a Xeon Phi KNC, achieves on average 3.03X speedup over MVAPICH2 on a Xeon E7-8890, and achieves on average 2.23X
speedup over MVAPICH2 on a 256-node Xeon E5-2680 cluster for block sizes less than 1 KB.

Index Terms—cache-oblivious algorithms, collective communication, NUMA, MPI Alltoall, MPI Allgather, neighborhood collectives.
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1 INTRODUCTION

WHILE both frequency and Dennard scaling have end-
ed, Moore’s law still holds and leads to a steadi-

ly growing number of cores. Many-core processors with
massive intra-node parallelism and complex memory hier-
archies are now commonplace. Compute nodes are com-
posed of complex Networks-on-Chip (NoCs) arranged in
cache-coherent multi-chip configurations with increasingly
expensive data movement costs. The Message Passing In-
terface (MPI) [1] is used ubiquitously for communication
in parallel applications. For many MPI applications, col-
lective operations (“collectives”) are performance critical
and directly determine scalability. Thus it is imperative
to achieve highest performance of collective data-transfers
using algorithms that exploit the inherent data-locality as
well as the memory hierarchy for intra- and inter-node parts
of the communication.

Intra-node communication is implemented using cache
line transfer on the NoC [2]. However, designing optimal
communication algorithms in terms of cache efficiency is
non-trivial. The first challenge comes from MPI itself: MPI
often launches multiple processes at each node, and each
process has a private virtual address space. Traditionally, da-
ta is copied in and then copied out of a shared system space
[3], which leads to extra memory copies. To deal with this
problem, three approaches have been developed: (1) kernel-
assisted communication [4], [5], (2) thread-based ranks [6],
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[7], and (3) shared heaps [8], [9]. All three approaches can
reduce the number of memory copies of intra-node commu-
nication to one (the minimum possible in MPI). However,
traditional algorithms for MPI collectives [10] mainly focus
on reducing the latency and bandwidth overhead over the
network, and ignore the cache efficiency. In fact, inter-node
communication faces the same problem, when considering
Dynamic Random Access Memory (DRAM) as a private
cache for each node on a multi-node machine.

A second challenge stems from the diversity of many-
core hardware itself: Processors may have very different
memory hierarchies, such as a two-level cache for Intel R©

Xeon PhiTM KNC [11] or a three-level cache for Intel R©

Xeon E7 [12]. The cache capacity of each level may also be
different. Furthermore, there are various arrangements of
main memory, including Uniform Memory Access (UMA)
or Non-Uniform Memory Access (NUMA), which has to
be considered in algorithm design to enable best perfor-
mance [7], [13]. This hardware diversity causes a high
programming effort to tune the algorithms.

Cache-oblivious algorithms [14], [15], [16], [17] are
asymptotically optimal (often within a factor of two) in
terms of cache complexity without considering any hard-
ware parameters. Thus, these algorithms enable portable
performance on different architectures. To carry these
benefits towards implementations of MPI collectives, we
propose cache-oblivious algorithms for MPI all-to-all style
operations, including MPI Alltoall, MPI Allgather, and
their neighborhood versions (many-to-many collectives),
and demonstrate their performance advantages. Figure 1
motivates our work. As expected, a naive implementation
based on shared heap for MPI Alltoall, in which each
process sequentially copies data blocks into its own re-
ceive buffer, is faster than the traditional MPI because of
less memory copies. However, compared with the naive
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implementation based on shared heap, our cache-oblivious
implementation further achieves 1.40X speedup in the ge-
ometric mean when the block size is less than 16 KB (i.e.,
the geometric mean of the speedups for the block sizes from
8 bytes to 8 KB is 1.40X), and performs equally for larger
block sizes.P P P
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Fig. 1. Latency comparison of MPI Alltoall between traditional MPI,
naive shared heap, and cache-oblivious implementations based on
shared heap on 60-core Intel Xeon Phi KNC.

The key idea is to arrange the order of transferring the
send buffers to the corresponding receive buffers in Morton
order [18]. The algorithms are implemented based on a
shared heap, which is established by POSIX shared memory
and overriding of dynamic memory allocation functions. If
the send and receive buffers in a users’ code are allocated on
the heap, the code directly benefits from our cache-oblivious
implementations without any modification. However, if the
send or receive buffers are on the stack, users have to
change them to be allocated on the heap to benefit from our
implementations. We also demonstrate how the idea can be
applied to multi-node machines. Compared with well-tuned
MPI libraries, our cache-oblivious implementations achieve
significant performance improvements on several different
architectures. The key contributions are as follows:

1) We propose cache-oblivious algorithms for MPI all-
to-all style collectives based on Morton order, and
prove the optimality by cache complexity analysis.

2) We improve the proposed cache-oblivious algo-
rithms for NUMA architectures to minimize the
total distance of data transfers.

3) We extend the cache-oblivious algorithms for multi-
node machines, in which DRAM is considered as a
private cache for each node.

4) We propose an ordered-buffer approach combined
with Morton order to exploit the data locality for
neighborhood collectives.

5) We perform benchmark and application studies on
different many-core machines to assess the benefit
of the proposed cache-oblivious algorithms.

6) We compare our analytic bounds with the measured
cache misses to demonstrate that the performance
advantage is due to better data locality.

In the next section, we discuss our cache-oblivious al-
gorithms for all-to-all style collectives. Sections 2.1 and 2.2
present the cache-oblivious algorithms of MPI Alltoall and
MPI Allgather based on Morton order. Section 2.3 analyzes
their cache complexity. Sections 2.4 and 2.5 discuss the im-
proved algorithms for NUMA architectures and multi-node

variants. Section 3 discusses an ordered-buffer approach
combined with Morton order for neighborhood collectives.
Experimental results are presented in Section 4. Section 5
discusses related work, and Section 6 concludes.

2 CACHE-OBLIVIOUS ALGORITHMS FOR ALL-TO-
ALL STYLE COLLECTIVES

For intra-node collectives, our algorithm design is based on
a shared heap [9], [19]. We briefly explain how to establish
the shared heap. First, we use POSIX shared memory APIs
to create and open a shared memory object, and map the
object to the virtual address space shared by the processes.
Then, the shared address space is equally partitioned among
the processes within a node. Next, we override the dynamic
memory allocation functions provided by the system, so that
each process can allocate and release memory on its own
partition. In this way, each process can directly access the
data allocated on the partitions of other processes. All the
send/receive buffers and the auxiliary arrays shown in the
following, are allocated on the shared heap. Note that any
MPI library can do this legally following the specification.
A program with buffers on the stack cannot benefit from the
shared heap solution, unless the code is modified to allocate
the buffers on the shared heap.

2.1 MPI Alltoall and MPI Allgather Based on Morton
Order
For MPI Alltoall, also known as all-to-all personalized ex-
change, every process sends a distinct data block to every
other process. Processes can view all send buffers as a
2D matrix, of which each dimension’s size is equal to the
number of processes involved and each element represents a
data block; and so do the receive buffers. We name these two
matrices as ’send-buffer matrix’ and ’recv-buffer matrix’, re-
spectively. An all-to-all personalized exchange is equivalent
to transposing the send-buffer matrix and writing the results
to the recv-buffer matrix.
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Fig. 2. MPI Alltoall with 8 processes based on Morton order. The Z-
shaped curve is equally divided into 8 segments as indicated by the
colors and each one is handled by a different process.

In a naive implementation of MPI Alltoall, each process
copies a column of the send-buffer matrix into a row of
the recv-buffer matrix. The access to the send-buffer ma-
trix exhibits poor spatial locality because of the row-major
property of the matrix. To have good spatial locality for both
send-buffer and recv-buffer matrices, we use Morton order
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[18] (also known as Z-order) to sort the elements of the recv-
buffer matrix. For MPI Alltoall with P processes, the recv-
buffer matrix has 2 dimensions (x and y) with integer coor-
dinates 0≤x≤P −1 and 0≤y≤P −1. By interleaving the bits
of the binary values of x and y, we get a set of values (called
’Z-values’ here). Taking x = 2 = 0102 and y = 1 = 0012 as
an example, we get the Z-value = 0001102 = 6. The pairs
of coordinates are sorted in the numerical order of their
corresponding Z-values, and then stored sequentially in a
2-tuple array of length P 2 (for a total of P 2 pairs of co-
ordinates). This 2-tuple array is logically partitioned into P
segments. Each process sequentially accesses one segment of
the 2-tuple array, and copies the data block with coordinates
(x, y) of the send-buffer matrix into the data block with
coordinates (y, x) of the recv-buffer matrix. If we connect
the coordinates in the numerical order of the Z-values, we
get a recursively Z-shaped curve, as shown in Figure 2. The
data blocks, which are close to each other in the 2D matrix,
are also close to each other in the Z-shaped curve. Thus,
following the Z-shaped curve, the spatial locality of both
send-buffer and recv-buffer matrices is exploited.
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Fig. 3. MPI Allgather with 8 processes based on Morton order. The Z-
shaped curve is equally divided into 8 segments as indicated by the
colors and each one is handled by a process.

For MPI Allgather, also known as all-to-all broadcast,
each process sends the same data block to all other pro-
cesses. Each process can view the send buffers as a vector
(we call it “send-buffer vector”) and the receive buffers
as a matrix (we call it “recv-buffer matrix”). In a naive
implementation of MPI Allgather, each process copies the
send-buffer vector into its receive buffer (a row of the recv-
buffer matrix). There is no data reuse when each process
accesses the send-buffer vector, which exhibits poor tem-
poral locality. As for MPI Alltoall, we use Morton order
to sort the coordinates of the recv-buffer matrix and then
generate the 2-tuple array. Each process sequentially reads
the coordinates stored in one segment of the 2-tuple array,
and then copies the x-th block in the send-buffer vector into
the block with coordinates (y, x) in the recv-buffer matrix.
Using our 2-tuple array, the Z-shaped curve is drawn in
Figure 3. Once a data block in the send-buffer vector has
been accessed, it will soon be accessed again following the
Z-shaped curve, which exhibits good temporal locality.

2.2 Metadata Generation

When the number of processes P is a power-of-two, we can
avoid the explicit 2-tuple array and generate the coordinates

on the fly using high-performance bit manipulation instruc-
tions [12]. The intrinsic we use is pext u32(source,mask)
supported by Intel Haswell architecture. For each bit set
in the mask, the intrinsic extracts the corresponding bits
from the source operand and writes them into contiguous
lower bits of the return value, with the remaining upper
bits of the return value set to 0. For a process with rank
i, the Morton codes it deals with are the integers in the
range of [P ∗ i, P ∗ (i + 1) − 1]. Each process sequentially
selects a code in the range, and computes the corresponding
coordinates (x, y) as (x = pext u32(code, 0x55555555), y =
pext u32(code, 0xAAAAAAAA)). In this case, there is no

metadata generation overhead.
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Fig. 4. Morton order example where the number of processes is not a
power-of-two.

When the number of processes P is not a power-of-two,
using the bit-interleaving method discussed above, we may
generate a 2-tuple array corresponding to an imbalanced
Z-shaped curve. Figure 4(a) shows the Z-shaped curve for
P = 5, in which the long vertical line (in the right border)
and the long horizontal line (in the bottom border) lead to
reduced locality. Thus, if P is not a power-of-two, we gen-
erate a more balanced Z-shaped curve using binary search.
For a 2D matrix M , by dividing the longer dimension by
two, we partition M into two submatrices. We call the top
or the left submatrix M0, and the other one M1. Suppose
M0 has n0 elements. Then the Z-value for coordinates (x, y)
in M is given by the following binary recursion:

Zvalue(M,x, y) =


0 if M only contains (x, y),

Zvalue(M0, x, y) if (x, y)∈M0,

n0+Zvalue(M1, x, y) if (x, y)∈M1.

Connecting the coordinates in the numerical order of the Z-
values calculated by the recursion, we get a more balanced
Z-shaped curve, as shown in Figure 4(b). The coordinates
calculation is equivalent to the depth-first search of a bina-
ry tree with P 2 leaf nodes. To parallelize the calculation
among the P processes, each process calculates the Z-
values for the P pairs of coordinates of its own receive
buffer. Alternatively, each process (with rank i) calculates
the P pairs of coordinates for the Z-values in the range of
[P ∗i, P ∗(i+1)−1] using a similar binary recursion method
(i.e., recursively searching for the coordinates for a given
Z-value). We use the latter method since the coordinates
to be used by each process are calculated by itself and
stored locally. The storage overhead of the 2-tuple array for
each process is 2P , and the computation overhead for each
process is 2 log2 P ∗ P , where 2 log2 P is the height of the
tree.
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Since MPI Alltoall and MPI Allgather use the same 2-
tuple array, we only generate one array for both when P
is not a power-of-two. The 2-tuple array is created together
with the communicator structure [1], which contains the
information to provide the appropriate scope for all com-
munication operations in MPI. The 2-tuple array can be
reused whenever a collective function (such as MPI Alltoall,
MPI Allgather, or their irregular counterparts) related to
the communicator is called. Thus, the metadata generation
overhead can be amortized across the collective calls on the
communicator, but at a storage overhead of O(P ).

2.3 Cache Complexity Analysis

We discuss the cache complexity (the number of cache
misses) of the proposed algorithms for MPI Alltoall and
MPI Allgather in this section. Assume an ideal distributed-
cache model [15] for parallel machines. The model defines
a computer with a two-level memory hierarchy. Each core
has a private ideal cache [14] connected to an arbitrarily
large shared main memory. Each private cache is partitioned
into cache lines, and L is the number of words in each
cache line1. Each private cache contains Z words, where Z =
Ω(L2). Since there is no data dependency between processes
in the algorithms to be analyzed, we assume the number
of cache misses incurred by each process can be analyzed
independently. We use Q for the cache complexity of an
algorithm, P for the number of processes, and B for the
number of words of each data block, namely the block size.

2.3.1 Analysis for MPI Alltoall
For MPI Alltoall, each dimension of send- and recv-buffer
matrices is of size P . It is not consecutive between two
adjacent rows in these two matrices, since each process
allocates its own buffers. For the naive implementation
discussed in Section 2.1, the access to a row of the recv-
buffer matrix is consecutive, which incurs dPB/Le cache
misses for each process. However, the access to a column
of the send-buffer matrix is not consecutive, which incurs
P dB/Le cache misses for each process. Thus, the cache
complexity of the naive implementation of MPI Alltoall is

Qalltoall−naive = P dPB/Le+ P 2dB/Le
< 2P 2B/L+ P 2 + P = O(P 2B/L+ P 2). (1)

Whether P 2B/L or P 2 is the dominant term depends on
the block size B. Thus, we keep both terms in Equation (1).

Next, we prove that the cache complexity of the se-
quential algorithm for MPI Alltoall based on Morton or-
der is asymptotically optimal. We recursively divide the
longer dimension of the recv-buffer and send-buffer matrix
(or submatrix) by 2, which halves the work recursively
and forms a 2-ary task tree. This procedure is called k-
recursive decomposition [15] which forms a k-ary task tree
(here k = 2). Morton order is equal to a post-order traversal
of the task tree. The working set of each task corresponds
to two submatrices of size m × n and n × m. Let λ be a
constant sufficiently small so that two submatrices, where
max{mB,nB} ≤ λL, fit completely in cache. If B > Z/2,

1. If streaming prefetchers [12] are triggered on some processor, L is
the total size of the multiple cache lines prefetched at a time.

such λ does not exist. In this case, the data block size is so
large that the algorithm execution is equal to streaming the
two matrices, which incurs 2P dPB/Le cache misses. If λ
exists, there are three cases:

Case 1. max{mB,nB} ≤ λL. Both matrices fit in the
cache. The cache complexity is equal to the number of cache
lines of the two matrices, namely ndmB/Le+mdnB/Le.

Case 2. nB ≤ λL < mB. Since m is the larger dimen-
sion, it is recursively divided by 2 by traversing the task tree.
When mB falls into the range of [λL/2, λL], the working set
of the current task fits in cache. Then, we have the recursion

Q(m,n) ≤
{
ndmB/Le+mdnB/Le if mB∈[λL/2, λL],

2Q(m/2, n) otherwise;

whose solution is Q(m,n) = ndmB/Le + mdnB/Le. Simi-
larly, we have the same solution for mB ≤ λL < nB.

Case 3. mB,nB > λL. The working set is recursively
divided by 2 until both mB and nB fall into the range of
[λL/2, λL], and the working set of the current task occupies
ndmB/Le+mdnB/Le cache lines. By solving the recursion,
we get Q(m,n) = ndmB/Le+mdnB/Le for this case.

For MPI Alltoall, we havem=n=P . Thus, the cache com-
plexity of the sequential cache-oblivious algorithm based on
Morton order for MPI Alltoall is

Qalltoall−co−seq = 2P dPB/Le < 2(P 2B/L+ P )

= O(P 2B/L+ P ). (2)

Since the send-buffer and recv-buffer matrices occupy at
least 2P dPB/Le cache lines, the sequential cache-oblivious
algorithm is asymptotically optimal. However, low cache
complexity for sequential algorithms does not mean the
same for parallel algorithms [20]. We utilize Theorem 2.1
from Frigo and Strumpen [15] to analyze the cache com-
plexity of the parallel cache-oblivious algorithm.

Theorem 2.1. (Frigo and Strumpen [15]) Let T be a trace (the
sequence of instructions in program order) of a parallel compu-
tation in P processes. T is partitioned into S segments and the
segments are executed on an ideal distributed-cache machine.
For any segment A of T , let f be a concave function such that
Q(A)≤f(|A|) holds, where |A| is the length of A. Then, the total
number QP (T ) of cache misses incurred by the parallel execution
of the trace is bounded by QP (T )≤Sf(|T |/S).

To use Theorem 2.1, one should prove that the cache
misses of all the segments A are bounded by Q(A)≤f(|A|).
Let T be the trace of the post-order traversal of a k-ary task
tree. One can easily find a nondecreasing function f such
that Q(A)≤f(|A|) holds for any segment A corresponding
to a complete subtree. For such f , it has been proved that
Q(A)≤2f(k|A|) holds for all A of T , not only for those
corresponding to complete subtrees [15]. Then, we obtain
the following corollary based on Theorem 2.1.

Corollary 2.2. Let T be the trace of the post-order traversal of a
k-ary task tree formed by k-recursive decomposition. If f is a
nondecreasing concave function so that Q(A)≤f(|A|) holds for
any segmentA of T corresponding to a complete subtree, the cache
complexity incurred by a parallel execution of T in P processes is
QP (T )=O(Sf(k|T |/S)), where S is the number of segments.

Recall that the cache complexity of the sequential cache-
oblivious algorithm for MPI Alltoall is O(P 2B/L+P ), and
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P 2B is the trace length. Let |A|=P 2B. Then, we have a non-
decreasing concave function f(|A|) ∈ O(|A|/L+

√
|A|/B),

and Q(A)≤f(|A|) holds for any A corresponding to a
complete subtree, which can be proved by induction on
the complete subtrees. For the parallel cache-oblivious al-
gorithm, the trace T is equally partitioned into P seg-
ments for P processes. Using Corollary 2.2, we have QP (T )
= O(Pf(2|T |/P )), where |T | = P 2B. Thus, the cache
complexity of the parallel cache-oblivious algorithm for
MPI Alltoall is

Qalltoall−co−par = O(P 2B/L+ P
3
2 ). (3)

In practice, P is large enough so that P>L/B is com-
monly satisfied. Then both Equation (2) and Equation (3)
can be simplified to O(P 2B/L), from which we find that
cache complexities of the parallel and the sequential cache-
oblivious algorithms for MPI Alltoall are asymptotically
equal, and also asymptotically optimal. Comparing Equa-
tion (1) with Equation (3), we find that the smaller the value
of B/L (i.e., the smaller the value of the block size B), the
larger advantages the parallel cache-oblivious algorithm has
over the naive algorithm; when B is so large that Equation
(1) can be simplified to O(P 2B/L), the two algorithms
perform equally.

Equation (3) gives an upper bound of the cache com-
plexity for the parallel cache-oblivious algorithm in general
cases. To obtain the exact number of cache misses is difficult.
However, both the sequential and parallel cache-oblivious
algorithms incur 2P 2B/L cache misses if the following two
conditions are satisfied: (1) The workload of each process is
a complete task subtree; (2) PB is an integral multiple of L.
This can be proved using Theorem 2.1.

2.3.2 Analysis for MPI Allgather
For MPI Allgather, each dimension of the recv-buffer matrix
is P . The length of the send-buffer vector is P . Each element
of the send-buffer vector represents a data block to be sent.
Since each process allocates its own send buffer, it is not
consecutive between two adjacent elements in the send-
buffer vector. For the naive implementation, each process
copies the send-buffer vector into a row of the recv-buffer
matrix (its own receive buffer). Thus, the cache complexity
of the naive implementation of MPI Allgather is

Qallgather−naive = P dPB/Le+ P 2dB/Le
= O(P 2B/L+ P 2). (4)

To analyze the cache complexity of the parallel algorithm
based on Morton order for MPI Allgather, there are 3 cases:

Case 1. B>Z/2. In this case, the size of each data
block is too large that two data blocks would exceed the
cache capacity, no temporal locality can be exploited for the
send-buffer vector. Thus, the sequential algorithm based on
Morton order for MPI Allgather incurs the same cache com-
plexity (shown in Equation (4)) as the naive implementation.

Using Corollary 2.2, the cache complexity of the parallel
cache-oblivious algorithm for MPI Allgather is

Qallgather−co−par = O(P 2B/L+ P 2). (5)

In this case, B/L is much larger than one, and
both Equation (4) and Equation (5) can be simplified to

O(P 2B/L). Thus, for very large block size, the parallel
cache-oblivious algorithm and the naive algorithm for
MPI Allgather perform equally.

Case 2. B≤Z/2 and P≥
√
Z/B. In this case, the total

size of send-buffer vector and recv-buffer matrix exceeds
the cache capacity. The temporal locality of the send-buffer
vector can be exploited using Morton order. Using a similar
analysis to the one we used for MPI Alltoall, we obtain
the cache complexity of the sequential algorithm based on
Morton order for MPI Allgather as

Qallgather−co−seq = P 2dB/Le/
√
Z/B + P dPB/Le

= O(P 2B/L+ P 2/
√
Z/B). (6)

Using Corollary 2.2, the cache complexity of the parallel
cache-oblivious algorithm for MPI Allgather is

Qallgather−co−par = O(P 2B/L+ P 2/
√
Z/B). (7)

Comparing Equation (4) with Equation (7), we find that the
larger the value of

√
Z/B (i.e., the smaller the value ofB, for

Z is a constant), the larger the advantages the parallel cache-
oblivious algorithm has over the naive implementation.

Case 3. B≤Z/2 and P<
√
Z/B. In this case, the size

of send-buffer vector and the recv-buffer matrix is small
enough to fit in the cache. Thus, we have

Qallgather−co−seq = P dB/Le+ P dPB/Le
= O(P 2B/L+ P ). (8)

Using Corollary 2.2, the cache complexity of the parallel
cache-oblivious algorithm for MPI Allgather is

Qallgather−co−par = O(P 2B/L+ P
3
2 ). (9)

In practice, Equation (8) and Equation (9) can be simpli-
fied to O(P 2B/L). Comparing Equation (4) with Equation
(9), we find that the smaller the value of B/L (i.e., the small-
er the value of the block size B), the larger the advantages
of the parallel cache-oblivious algorithm.

The send-buffer vector and recv-buffer matrix occupy at
least P dB/Le+P dPB/Le, i.e., O(P 2B/L+P ), cache lines,
which is asymptotically lower than the cache complexity
of the parallel cache-oblivious algorithm in Case 2. We do
not know if there are other algorithms for MPI Allgather
which incur a lower cache complexity. For the cache-aware
algorithm, the recv-buffer matrix is tiled to exploit the data
locality. In Cases 1 and 3, it is straightforward to observe
that the cache-aware algorithm incurs the same cache com-
plexity as the cache-oblivious algorithm. In Case 2, the
total size of the recv-buffer submatrix and the send-buffer
subvector in the cache-aware algorithm is tuned to fit in the
cache. Thus, the size of each dimension of the recv-buffer
submatrix is

√
Z/B. In this case, the cache-aware algorithm

also incurs the same cache complexity (shown in Equation
(6)) as the cache-oblivious algorithm.

2.4 Improved Algorithms for NUMA Architectures
In NUMA architectures, a processor accesses local memory
faster than remote memory. However, our previously pro-
posed algorithms assume all the processes are equal and
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ignore the NUMA features. Guided by the Z-shaped curve,
a process may copy a remote data block to another remote
data block, which leads to a performance penalty. Thus, we
propose improved algorithms for NUMA architectures.

We discuss the algorithm for MPI Alltoall first. Assume
that a NUMA system has s processors and each processor
has q cores. Each process allocates its send and receive
buffers in its local memory. The distance between a process
and a local data block is dl, while the distance between
a process and a remote data block is dr, where dr > dl.
To fill a receive buffer, it needs to read at least q(s − 1)
remote data blocks, plus reading q local blocks and writing
qs local data blocks, which leads to the total distance of
q(s− 1)dr + q(s+ 1)dl (the minimal distance). 
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Fig. 5. NUMA-aware MPI Alltoall combined with Morton order on a
NUMA system with 4 processors. Each processor has 4 cores. A total
of 16 processes are ranked sequentially in the 4 processors.

To achieve the minimal distance of data transfers, we
propose a NUMA-aware algorithm combined with Morton
order for MPI Alltoall, which guarantees that each process
only writes into its local receive buffers. For processor r, the
local data blocks to be sent to processor x form a bunch that
we call sendBunch(r, x); the local data blocks to be received
from processor y form a bunch that we call recvBunch(r,
y). Here r, x, y∈[0, s-1]. The algorithm needs s steps. In step
i (i ∈ [0, s-1]), processor r copies sendBunch((r+i)%s, r)
into recvBunch(r, (r+i)%s); and the q processes within
processor r copy the data blocks in parallel following Mor-
ton order, as discussed in Section 2.1. An instance of the
algorithm for MPI Alltoall is illustrated in Figure 5. The
NUMA-aware algorithm for MPI Allgather is similar. Using
the analysis in Section 2.2, one can show that the NUMA-
aware algorithms are cache-oblivious within each processor.

2.5 Algorithms for Multi-Node Machines

The proposed cache-oblivious algorithms can be easily ex-
tended to multi-node machines. Taking MPI Alltoall as an

example, the optimized implementation on multi-core clus-
ters [21], [22] typically has three phases: intra-node packing
with local transpose, inter-node transpose by node leaders,
and intra-node unpacking. Our cache-oblivious algorithms
benefit the intra-node transposes as discussed above.

Next, we discuss how the cache-oblivious algorithm
also benefits the inter-node transpose. For this, we model
DRAM as a private cache for each node, and we model
the whole cluster as a distributed cache. Different from
the common hardware caches, we cache the adjacent da-
ta from remote node in DRAM manually, which is done
by sending or receiving large blocks of consecutive data.
First, we consider the case if P (the number of nodes)
is a power-of-two. For simplicity, we reuse Figure 2 to
illustrate how the algorithm for MPI Alltoall works on an
8-node machine (i.e., P=8). The workload of each process
is determined by the corresponding segment of Morton
order. The algorithm includes three phases: (1) Each process
receives the consecutive data blocks from the corresponding
remote node in a single aggregated message. For example,
process0 receives the aggregated message {A0, A1} from
itself, {B0, B1} from process1, {C0, C1} from process2,
and {D0, D1} from process3. (2) Each process does a local
transpose on the received blocks following the Morton
order. (3) Each process sends the consecutive transposed
data blocks to the corresponding remote node in a single
aggregated message. For example, process0 sends the ag-
gregated message {A1, B1, C1, D1} to process1, and sends
{A0, B0, C0, D0} to itself. In this way, the spatial locality
of the inter-node transpose is exploited. If P=2n and n
is an even number, each process issues

√
P independent

communications in both phase (1) and phase (3). If P=2n

and n is an odd number, each process issues
√

2P indepen-
dent communications in phase (1) and

√
P/2 independent

communications in phase (2).
We further compare our algorithm for MPI Alltoall with

several traditional algorithms in terms of communication
rounds. Suppose P=2n and n is an even number. The
number of communications caused by our algorithm is
2
√
P , which is asymptotically lower than the Isends-Irecvs-

Waitall and pairwise exchange algorithms [10] (both algo-
rithms cause P -1 communications). The number of commu-
nications caused by Bruck’s algorithm [23] is log2 P , which is
lower than our algorithm. However, our algorithm can bet-
ter utilize the parallelism within the interconnect network
(each process can issue up to

√
P messages simultaneously

in both phase (1) and phase (3)). On the contrary, single-
ported Bruck’s algorithm issues the messages sequentially.
Bruck’s algorithm can also be implemented as multi-ported
to exploit the parallelism of the interconnect network. How-
ever, the single-ported version is widely used in the latest
MPI libraries, such as MPICH3, MVAPICH2, and Open MPI,
to achieve low latency for small messages. In addition,
our algorithm transfers less data than Bruck’s algorithm:
our algorithm transfers 2n bytes while Bruck’s algorithm
transfers n

2 log2 P bytes, where n is the size of the total
receive buffer. We demonstrate that our algorithm has a
performance advantage over the traditional algorithms for
small messages in Section 4.1.3.

If P is not a power-of-two, we expect the future hard-
ware or software cache for distributed memory to cache
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the remote data automatically, instead of caching the remote
data manually. The reason is that non-power-of-two nodes
lead to irregular sizes of aggregated messages, which makes
the manual cache become complicated and have additional
overhead.

3 NEIGHBORHOOD COLLECTIVES BASED ON
MORTON ORDER

For the MPI neighborhood collectives [1], a process only
communicates with its neighbors in a pre-defined process
topology. For example, MPI Neighbor alltoall sends a dis-
tinct data block to every neighbor process. For a naive
implementation based on shared heap, each process directly
copies the data blocks from its neighbors to its receive buffer.
In the following, we discuss how to use Morton order to
exploit data locality for these sparse communication pat-
terns. We will use a 2D Cartesian topology for 9 processes,
shown in Figure 6, as an example to elaborate how our
approach works, although the same approach works for
any process topology, such as a 3D Cartesian and a general
graph topology [24].

P0 P1 P2

P3 P4 P5

P6 P7 P8

2D Cartesian topology

P0 -> {P1 P2 P3 P6};

P1 -> {P0 P2 P4 P7};

P2 -> {P0 P1 P5 P8};

P3 -> {P0 P4 P5 P6};

P4 -> {P1 P3 P5 P7};

P6 -> {P0 P3 P7 P8};

P7 -> {P1 P4 P6 P8};

P5 -> {P2 P3 P4 P8};

P8 -> {P2 P5 P6 P7};

Neighbors of each process

Fig. 6. A 2D Cartesian topology for 9 processes.

3.1 Morton Order for Neighborhood Collectives
For any process topology, the Cartesian product of all the
possible send processes and receive processes produces a 2D
coordinate system. Figure 7 presents a 2D coordinate system
generated from the 2D Cartesian topology for 9 processes.
If a communication happens between a send process and
a receive process, we mark the corresponding coordinates
with ’X’. We use Morton order to sort all the coordinates,
which forms a Z-shaped curve. By directly connecting the
adjacent coordinates marked by ’X’ in the Z-shaped curve,
we get a compact curve shown in Figure 7(b).

We create a 4-tuple for each pair of coordinates in the
compact curve, and store the 4-tuples in an array in the
same order as that in the compact curve. Each 4-tuple is
expressed as (Rs, Rr, Bs, Br), where Rs denotes the rank
of send process, Rr denotes the rank of receive process, Bs

denotes the Bs-th block in the send buffer, and Br denotes
the Br-th block in the receive buffer. Rs and Rr can be
derived directly from the coordinates, while Bs is equal
to the number of ’X’s above the coordinates in the same
column and Br is equal to the number of ’X’s on the left of
the coordinates in the same row. The 4-tuple array is equally
partitioned and each process handles one segment. For
MPI Neighbor alltoall, the process copies the Bs-th block
in the send buffer of process Rs into the Br-th block in the
receive buffer of process Rr . For MPI Neighbor allgather,
each process sends the same block to its neighbors. Thus,
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For (P4, P7), the 4-tuple is (4, 7, 3, 1).
 

(b) A compact curve for the coor-
dinates with communication

Fig. 7. Morton order for neighborhood collectives in a 2D Cartesian
topology, where ’X’ denotes a communication between a pair of neighbor
processes.

Sendbuffer

Recvbuffer

P1

P4

P3 P5

P7

North

South

West East

(a) Traditional neighborhood
alltoall

Sendbuffer

Recvbuffer

P1

P4

P3 P5

P7

North

South

West East

(b) Neighborhood alltoall
with ordered buffers

Fig. 8. Comparison of data-block layouts between the traditional and
ordered-buffer MPI Neighbor alltoall in a 2D Cartesian topology.

each process copies the data block in the send buffer of
process Rs into the Br-th block in the receive buffer of
process Rr.

The irregular neighborhood collectives, including
MPI Neighbor alltoallv and MPI Neighbor allgatherv, can
also utilize the 4-tuple array to exploit data locality. These
two irregular operations allow one to receive data blocks
with different sizes from its neighbors. The data block size
and its displacements in the send and receive buffers can
be obtained by accessing the block-size and displacement
arrays [1] using the 4-tuple. For MPI Neighbor allgatherv,
the data block size and its displacement in the receive buffer
are determined by the Br-th elements of the block-size and
displacement arrays, respectively. For NUMA architectures,
we use a similar NUMA-aware algorithm as discussed in
Section 2.4 to minimize the data transfer distance.

3.2 Ordered Buffers for Neighborhood Collectives
The algorithm presented in Section 3.1 requires that the
data blocks to be sent are placed in the send buffer in
the numerical order of the ranks of the destination pro-
cesses; and the data blocks received are placed in the
receive buffer in the numerical order of the ranks of the
source processes. However, this is not always true. For the
MPI Neighbor alltoall in a 2D Cartesian topology shown
in Figure 8(a), the four data blocks to be sent by process
P4 are placed in the send buffer in the order of orientations
of the four destination processes, i.e., the order of {North
(P1), South (P7), West (P3), East (P5)}. However, we should
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change it to {P1, P3, P5, P7} to obtain the ordered send
buffer as shown in Figure 8(b). The requirement of ordered
buffers may increase the programming complexity, since
the programmer needs to build the topology as a general
graph [1]. Fortunately, for many scientific applications [25],
[26], [27], [28], [29], these structures are only created in the
initialization phase and reused for many iterations.

4 EVALUATION

Experiments were conducted on three different machines,
including an Intel Xeon Phi KNC 5110P, an Intel Xeon E7-
8890 v3, and a multiple-node Intel Xeon E5-2680 v3 cluster.
The cache line size of all three architectures is 64 bytes. Xeon
Phi has 60 cores, and each core has a 32 KB L1 data cache
and a 512 KB unified L2 cache. The tag directories for cache
coherence [11] and memory controllers are connected by a
bidirectional ring, which forms a UMA architecture. Xeon
E7-8890 contains 4 processors connected by QPI, and each
processor has 18 cores sharing a 45 MB unified L3 cache,
which forms a NUMA architecture. Each core of Xeon E7-
8890 has a 32 KB L1 data cache and a 256 KB unified
L2 cache. We run 72 processes on Xeon E7-8890 and 60
processes on Xeon Phi to utilize all the cores. The multi-
node cluster consists of 256 nodes, which are connected by
Infiniband. Each node of the cluster has two Xeon E5-2680
v3 processors and each processor has 12 cores.

We compared our cache-oblivious collectives with sever-
al state-of-the-art MPI libraries, including MPICH 3.1.4, Intel
MPI 5.0, MVAPICH2 2.1, Open MPI 1.10, and MVAPICH2-
MIC 2.0. All these libraries provide specific channel for
efficient shared-memory communication, such as Shared-
Memory-CH3 in MVAPICH2, sm BTL in Open MPI, and
Nemesis in MPICH. We also configure MVAPICH2 to use
Limic2 [4] for one-copy shared-memory communication.
Recall that our algorithms require that the send and receive
buffers be allocated in the shared heap whereas traditional
MPI libraries work with any buffers. For brevity, we use SH-
Naive to denote the naive implementations (implemented in
[19]) based on shared heap, where each process sequentially
copies the data blocks into its receive buffer as discussed
in Section 2. To have a fair performance comparison on
NUMA architectures, SH-Naive is also optimized as NUMA-
aware, where each process staggers the data block copies
to avoid the inter-socket congestions. We use SH-CO to
denote the cache-oblivious algorithms based on shared heap
which ignore NUMA features, SH-NUMA-CO to denote
the NUMA-aware algorithms which keep cache-oblivious
within each processor, and MN-CO to denote the cache-
oblivious algorithms on multi-node machines. We define the
speedup S as S = Tref

T . This means an optimized operation
which runs in 50% of the latency (time) of the reference
operation is said to have a speedup of 2 (denoted as 2X).
When mentioning average speedup, we mean the geometric
mean of the speedups across different problem sizes.

4.1 Benchmark Evaluation

We use benchmarks to test the latency of the collectives.
Each collective is run for 256 times and we present the
average latency in the following figures. The difference

1   double begin, totalTime, avgTime=0.0;   int i;   long long missNum=0; 
2   for(i=0; i<ITER; i++) {
3       Invalidate all the cache lines;
4
5       /*** bring buffers into local cache or memory ***/ 
6       Access the send buffer sequentially;
7       Access the receive buffer sequentially;
8       MPI_Barrier();
9       
10     /** test the latency or the cache misses of the operation **/
11     Begin = MPI_Wtime(); or  PAPI_start();
12     Call the MPI all-to-all operation;
13     totalTime += MPI_Wtime() - begin; or  missNum += PAPI_stop();
14  }
15  avgTime = totalTime/ITER;   or  missNum =  missNum/ITER;

Fig. 9. Pseudo code of the benchmark on shared memory machines.

between the average value and the latency measured in
each iteration is within 5%. On shared memory machines,
we design our own micro-benchmarks, which makes sure
that the send and receive buffers of each process are only
in its local cache before each time of running. In this way,
we prevent that the whole send-buffer and receive-buffer
matrices are cached locally for very small block sizes. Fig-
ure 9 shows the pseudo code of the benchmarks we use on
shared memory machines. On multi-node machines, we use
the OSU micro-benchmarks [30] to test the latency. The OSU
micro-benchmarks are the same as our micro-benchmarks
used on shared memory machines except that lines 3-7 in
Figure 9 are removed in the OSU micro-benchmarks.

4.1.1 Results on Xeon Phi
Figure 10(a) shows that SH-Naive for MPI Alltoall out-
performs all the traditional MPI libraries, including Intel
MPI, MVAPICH2, MVAPICH2-MIC, and MPICH3. This is
because the shared heap incurs less memory copies than
the traditional MPI [7]. Compared with MPICH3 which
performs best among the traditional MPI libraries, SH-CO
for MPI Alltoall achieves on average 3.11X speedup for
all the block sizes. Compared with SH-Naive, SH-CO for
MPI Alltoall achieves on average 1.40X speedup when the
block size is less than 16 KB (small and medium block
sizes), and performs equally when the block size gets larger.
This is consistent with the cache complexity analysis for
MPI Alltoall in Section 2.3, which shows that SH-CO has
advantages over SH-Naive for smaller value of B/L, where
B is block size. Here, the cache line length is 64 bytes.
However, modern processors provide streaming prefetchers
[12], which prefetch multiple consecutive cache lines at a
time for consecutive references. In this case, the value of L
is considered as the size of multiple cache lines prefetched,
which is larger than 64 bytes. This is the reason why SH-CO
still outperforms SH-Naive for medium block size.

Figure 10(b) shows that SH-Naive for MPI Allgather out-
performs all the traditional MPI libraries due to the shared
heap. For all the block sizes, SH-CO for MPI Allgather
achieves on average 2.90X speedup and 2.57X speedup over
MPICH3 and Intel MPI, respectively. Compared with SH-
Naive, SH-CO achieves on average 1.49X speedup when
the block size is less than 32 KB, and achieves on average
1.09X speedup for block sizes between 32 KB and 128 KB.
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Fig. 10. Latency of all-to-all style collective operations on Intel Xeon Phi KNC.
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Fig. 11. Latency of all-to-all style collective operations on Xeon E7-8890.

This is consistent with the cache complexity analysis for
MPI Allgather in Section 2.3, namely SH-CO has advan-
tages over SH-Naive when the block size is less than half
of the cache capacity (i.e., B≤Z/2), and the advantages of
SH-CO are larger when the block size B is smaller.

Figure 10(c) and Figure 10(d) show the performance
for neighborhood collectives in a 2D Cartesian topolo-

gy. We find that SH-Naive significantly outperforms all
the traditional MPI libraries due to the shared heap.
For all the block sizes, SH-CO for MPI Neighbor alltoall
and MPI Neighbor allgather achieve on average 3.05X
speedup and 2.91X speedup over MPICH3, respective-
ly. When the block size is less than 64 KB, SH-CO
for MPI Neighbor alltoall and MPI Neighbor allgather
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achieve on average 1.18X speedup and 1.17X speedup over
SH-Naive, respectively. This demonstrates that our cache-
oblivious algorithms have advantages even for sparse com-
munication patterns. Figure 10(e) and Figure 10(f) show
similar results for irregular MPI neighborhood collectives.

4.1.2 Results on Xeon E7-8890
On Intel Xeon E7-8890, we configure MVAPICH2 to use
Limic2 [4] for one-copy shared-memory communication.
Although Open MPI and MPICH3 can also be configured
with KNEM [5] to support one-copy shared-memory com-
munication, we only use MVAPICH2 with Limic2 as an
example for performance comparison. Figure 11(a) shows
that SH-Naive for MPI Alltoall outperforms all the tradi-
tional MPI libraries. One special case is MVAPICH2, which
performs equally with SH-Naive for large block size. This
is because MVAPICH2 switches to use Limic2 when the
block size is larger than 64 KB. SH-CO performs worse
than SH-Naive, SH-NUMA-CO, and MVAPICH2 for large
block size, because SH-CO ignores the NUMA feature of
Xeon E7-8890 and causes more cross-chip data transfers. SH-
NUMA-CO performs equally with MVAPICH2 when Limic2
is triggered (i.e., for the block sizes from 64 KB to 2 MB), and
significantly outperforms MVAPICH2 for the block sizes
smaller than 64 KB. Overall, SH-NUMA-CO achieves on
average 3.03X speedup over MVAPICH2 for all the block
sizes. Compared with SH-Naive, SH-NUMA-CO achieves
on average 1.41X speedup when the block size is smaller
than 16 KB, and performs equally when the block size gets
larger. This is consistent with the cache complexity analysis
in Section 2.3. Since SH-Naive is also optimized as NUMA-
aware, the advantage of SH-NUMA-CO comes from the
lower cache complexity of the cache-oblivious algorithm.

Figure 11(b) shows that SH-NUMA-CO for
MPI Allgather achieves on average 1.62X speedup over
SH-Naive when the block size is smaller than 64 KB, and
achieves on average 1.12X speedup over SH-Naive for block
sizes from 64 KB to 2 MB. These results are consistent with
the cache complexity analysis for MPI Allgather in Section
2.3. Compared with MVAPICH2, SH-NUMA-CO achieves
on average 1.09X speedup when Limic2 is triggered in
MVAPICH2 (i.e., for the block sizes from 128 KB to 2 MB),
and achieves on average 6.05X speedup for the block sizes
less than 128 KB. Because of ignoring the NUMA features,
SH-CO performs worse than SH-Naive, SH-NUMA-CO, and
MVAPICH2 for large block sizes.

To further explain these phenomena on Xeon E7-8890,
we present the cache misses of different algorithms for
MPI Allgather and MPI Alltoall in Table 1 and Table 2,
respectively. First, we demonstrate that the predicted values
discussed in Section 2.3 are consistent with the measured
values. We measure the value of L using a simple bench-
mark, in which the data in one buffer is consecutively copied
from one buffer into another buffer and the cache misses on
each cache level during the memory copy are measured.
We use Nmiss to denote the number of cache misses on
each cache level, and Ntotal to denote the number of cache
lines that the two buffers occupy. Then, the value of L is
estimated as L = (Ntotal/Nmiss)∗cacheLineSize. We find that
the value of L is different on different cache levels, and
also different for different buffer sizes. Here, we use an

example, the number of L2 cache misses of MPI Allgather
when the block size is 4 KB, to show the consistency.
When comparing the values, we use the number of cache
misses predicted for the sequential cache-oblivious algo-
rithm to estimate the number of cache misses incurred the
parallel cache-oblivious algorithm. In the example, the L2
cache capacity Z=256 KB, the block size B=4 KB, and the
number of processes P=72. We measured L=70.4 for the
buffer size around 4 KB and L

′
=80.6 for the buffer size

around 16 KB on L2 cache. Since B≤Z/2 and P≥
√
Z/B,

Equation (6) is used to predict the cache misses for the
cache-oblivious algorithm. The number of cache misses
incurred by the cache-oblivious algorithm for each process
is P dB/Le/

√
Z/B + dPB/L′e=4190 (L

′
is used here since

consecutive data blocks in the receive-buffer matrix are
accessed under Morton order, and the size of the consecutive
data blocks is about 16 KB). Similarly, using Equation (4), the
number of cache misses incurred by the naive algorithm for
each process is dPB/L′e + P dB/Le=7907. We can see that
the predicted values are approximately consistent with the
measured values (4888 and 8134 for SH-NUMA-CO and SH-
Naive, respectively) shown in Table 1. We summarize that
other predicted values are also approximately consistent
with the measured values. The reasons for the error between
the predicted and the measured values include: (1) The
value of L is not very accurate since it varies for different
buffer sizes; (2) The instructions and other data structures
would take up part of the cache capacity.

Next, we discuss how the cache miss statistics in Ta-
ble 1 explain the performance data of MPI Allgather in
Figure 11(b). For the block sizes less than 32 KB, SH-
CO and SH-CO-NUMA incur less cache misses than SH-
Naive in both the L1 and L2 cache, due to better locality
for the private caches. This explains why SH-CO-NUMA
outperforms SH-Naive for small block sizes. However, SH-
CO incurs more L3 cache misses than SH-NUMA-CO and
SH-Naive for all block sizes, because SH-CO is not NUMA-
aware and causes more remote (cross-chip) accesses. This
explains why SH-CO performs worse than SH-Naive and
SH-NUMA-CO. The cache misses in Table 2 also explain
the performance data of MPI Alltoall in Figure 11(a). The
cache miss statistics, together with the cache complexity
analysis in Section 2.3, provide concrete evidence that the
performance advantage of our cache-oblivious algorithms
is due to better data locality.

Figure 11(c) and Figure 11(d) show the perfor-
mance for neighborhood collectives in a 3D Cartesian
topology. SH-NUMA-CO for MPI Neighbor alltoall and
MPI Neighbor allgather achieve on average 1.17X speedup
and 1.15X speedup over SH-Naive when the block size
is less than 64 KB, respectively; and achieve 109.6 GB/s
and 104.8 GB/s total bandwidth when the block size is 4
MB, respectively. Figure 11(e) and Figure 11(f) show that
SH-NUMA-CO performs slightly worse than SH-Naive for
small blocks for irregular neighborhood collectives, which
is caused by the indirect data accesses to the message-size
and displacement arrays.

4.1.3 Results on the Xeon E5-2680 cluster
Figure 12(a) presents the latency of MPI Alltoall on the 256-
node Xeon E5-2680 cluster (using one core on each node).
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TABLE 1
Cache misses for MPI Allgather on Xeon E7-8890. Measured with PAPI 5.4.1 using the benchmark in Figure 9.

Block size
(bytes)

L1 data cache misses L2 data cache misses L3 cache misses
SH-Naive SH-CO SH-NUMA-CO SH-Naive SH-CO SH-NUMA-CO SH-Naive SH-CO SH-NUMA-CO

8 292 149 204 250 86 141 12 14 12
64 385 239 301 323 133 208 15 33 17
512 1557 967 1077 925 543 840 43 163 42
4K 9644 6667 7254 8134 4260 4888 108 1078 111
32K 75052 75152 75010 56759 36232 37314 3317 5951 2931
2M 4736648 4735659 4736010 4684743 4708920 4692626 682473 1039694 705242

TABLE 2
Cache misses for MPI Alltoall on Xeon E7-8890. Measured with PAPI 5.4.1 using the benchmark in Figure 9.

Block size
(bytes)

L1 data cache misses L2 data cache misses L3 cache misses
SH-Naive SH-CO SH-NUMA-CO SH-Naive SH-CO SH-NUMA-CO SH-Naive SH-CO SH-NUMA-CO

8 296 189 228 274 111 148 18 31 18
64 437 313 341 354 210 259 64 70 59
512 1681 1279 1338 1109 846 886 446 482 349
4K 10508 9228 9302 8419 7076 7221 1565 1739 1256
32K 75209 75184 75351 60318 58944 57524 17620 19899 15693
2M 4724670 4728056 4699975 4644480 4625977 4450142 1391704 1452379 1399442
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Fig. 12. The latency of MPI Alltoall and MPI Allgather on multi-node machines.

For MVAPICH2, it uses Bruck’s algorithm [23] for block sizes
less than 512 bytes, and uses the Isend-Irecv algorithm for
the larger block sizes. Note that both MVAPICH2 and MN-
CO use MPI point-to-point communications to implement
the collective operations on multi-node machines. MN-CO
achieves on average 2.23X speedup over MVAPICH2 for
block sizes less than 1 KB, and performs worse than M-
VAPICH2 for larger block sizes. Compared with Bruck’s
algorithm, our algorithm better utilizes the parallelism with-
in the interconnect network and transfers less data, as
discussed in Section 2.5. This is the reason why MN-CO
outperforms MVAPICH2 for small messages. However, as
the block size becomes larger, MVAPICH2 switches to the
pairwise exchange algorithm. Although MN-CO causes less
communications than the pairwise exchange algorithm, the
amount of data to be transferred is two times as much as
the pairwise exchange algorithm. This is the reason why MN-
CO performs worse than MVAPICH2 for larger block sizes.
At last, it demonstrates that the cache-oblivious algorithm
has a significant advantage over Bruck’s algorithm for small
messages by exploiting data locality in DRAM.

Figure 12(b) presents the latency of MPI Alltoall on the
128-node Xeon E5-2680 cluster (using all 24 cores on each
node). The label topo-aware in Figure 12(b) means the corre-

sponding implementation is topology-aware, which consists
of three phases: (1) intra-node packing with local transpose,
(2) inter-node transpose by node leaders, and (3) intra-node
unpacking. The difference between the different topology-
aware implementations lies in the phase of the inter-node
transpose by node leaders. For the block sizes less than
64 B, topo-aware MN-CO achieves on average 1.88X speedup
over topo-aware MVAPICH2. This is because topo-aware MN-
CO has a performance advantage in the phase of the inter-
node transpose for small block sizes. Topo-aware MN-CO
achieves on average 3.81X speedup over MVAPICH2 with-
out topology-aware optimization for the block sizes less
than 64 B. We also present the latency of MPI Allgather on
the 256-node Xeon E5-2680 cluster in Figure 12(c). For block
sizes less than 4 KB, topo-aware MN-CO achieves on average
1.91X speedup over topo-aware MVAPICH2.

We also implement the two topology-aware
MPI Allgather algorithms proposed by Mamidala et
al. [22] and Ma et al. [31], and compare them with our
algorithm in Figure 13. For the former one, MPI Allgather
is implemented as inter-node recursive-doubling overlapped
with intra-node unpacking, labeled as recursive-doubling with
overlap. For the latter one, MPI Allgather is implemented
as inter-node ring algorithm overlapped with intra-node
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unpacking, labeled as ring with overlap. For the block sizes
less than 2 KB, topo-aware MN-CO achieves on average 1.88X
and 1.82X speedups over recursive-doubling with overlap and
ring with overlap, respectively, since our algorithm utilizes
the parallelism of the interconnect network better. These
results demonstrate that our cache-oblivious algorithms
also benefit multi-core clusters.
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Fig. 13. MPI Allgather with intra- and inter-node communications over-
lap on 256-node Xeon E5-2680 v3, using all 24 cores on each node.

4.2 Application Evaluation

We test the total runtime of 3D FFT from NPB3.2 [32]
using the classes S, W, A, and B, where MPI Alltoall is
intensively used for global transpose. The workload of each
class is slightly changed since the number of processes (in
1D layout) on Xeon Phi and Xeon E7-8890 is not a power-of-
two. The data block sizes of MPI Alltoall for classes S, W,
A, and B are 1 KB, 2 KB, 32 KB, and 128 KB, respectively.
Results in Figure 14(a) and Figure 14(b) show that SH-CO
has a performance improvement over SH-Naive at small
scales (S and W). On Xeon Phi, SH-CO achieves on average
1.16X speedup over SH-Naive at all scales, and achieves on
average 1.80X speedup over Intel MPI at all scales. On Xeon
E7-8890, SH-NUMA-CO achieves on average 1.14X speedup
over SH-Naive at all scales, and achieves on average 1.52X
speedup over MVAPICH2 with Limic2 at all scales.

Heat transfer simulations on 2D grid and 3D grid of
different sizes are carried out on Xeon Phi and Xeon E7-8890,
respectively. Both simulations are run for 1,024 iterations.
On Xeon Phi, we run 60 processes, which are arranged
in a 2D Cartesian topology (6×10). As labeled in Figure
15(a), the size of the 2D grid is N*N . Thus, each process
is responsible for a (N/6)*(N/10) rectangular region. The
ghost data to be exchanged for each process are the four
edges, with the lengths of N/10, N/10, N/6, and N/6,
respectively. MPI Neighbor alltoallv dominates the com-
munication time; SH-CO achieves on average 1.15X speedup
and 1.85X speedup over SH-Naive and MVAPICH2 at all
scales, respectively, as shown in Figure 15(a). On Xeon E7-
8890, we run 72 processes, which are arranged in a 3D
Cartesian topology (3×4×6). As labeled in Figure 15(b), the
size of the 3D grid is 3N*4N*6N . Thus, each process is
responsible for an N*N*N cubic region. The ghost data to
be exchanged for each process are the six facets of the cubic
region, with the area of N*N . MPI Neighbor alltoall dom-
inates the communication time; SH-NUMA-CO achieves on
average 1.27X speedup and 1.79X speedup over SH-Naive
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Fig. 15. Heat transfer simulation on Xeon Phi and Xeon E7-8890.

and MVAPICH2 with Limic2 at all scales, respectively, as
shown in Figure 15(b). Results on real applications verify
the advantages of the cache-oblivious collective operations.

5 RELATED WORK

To improve the efficiency of data movement, several tech-
niques [4], [5], [6], [8], [19] have been developed for single-
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copy shared-memory MPI communication. Although the
underlying communication channel has been well tuned,
both intra-node and inter-node collectives are commonly
implemented using the traditional algorithms [10]. These
algorithms are originally designed to minimize the latency
or bandwidth overhead in a network, but do not fully
exploit the data locality in the memory hierarchy.

Topology-aware implementations for MPI collective and
I/O operations have been intensively studied. Mamidala et
al. [22] proposed a shared memory and RDMA based design
for MPI Allgather. They used a common memory segment
for both intra- and inter-node communications. Based on
this, the number of inter-node messages is reduced, and
also the intra- and inter-node communications can be over-
lapped. Ma et al. [31] proposed HierKNEM, which is a
kernel-assisted topology-aware collective framework and
enables overlap of intra- and inter-node communications.
Karonis et al. [33] proposed an implementation of topology-
aware collective operations, which exploited the hierarchy
in a multi-layer network. To improve the data locality for
collective I/O operation, Filgueira et al. [34] employed the
linear assignment problem for finding the optimal distribu-
tion of data to processes.

To exploit the data locality, Frigo et al. [14] have pre-
sented cache-oblivious algorithms for matrix transpose, FFT,
sorting, and matrix multiplication, where the problem is di-
vided recursively and eventually reaches a subproblem size
that fits into cache. These algorithms achieve asymptotically
optimal cache complexity without tuning any parameter.
However, these algorithms rely heavily on recursive func-
tion calls. Besides, one should use scheduling strategies, like
work stealing [20], to parallelize these algorithms, which in-
curs scheduling overhead. Alternatively, this paper uses a Z-
shaped curve to implement the parallel cache-oblivious al-
gorithms without any scheduling overhead. Chatterjee and
Sen [35] investigated the memory system performance of
several memory-efficient algorithms under different mem-
ory models, including the cache-oblivious algorithm, for
matrix transposition. Frigo et al. [15] analyzed the cache
complexity of parallel cache-oblivious algorithms executed
by the Cilk work-stealing scheduler [36], which inspired us
to analyze the proposed cache-oblivious MPI collectives.

Space-filling curves, such as Morton order, Peano, and
Hilbert, have been utilized to implement cache-oblivious
algorithms. Bader et al. [16] proposed a cache-oblivious
scheme combined with hand-tuned kernels for matrix mul-
tiplication and LU decomposition based on Peano curves.
Frens et al. [37] presented a cache-oblivious algorithm
for QR factorization based on Morton-ordered quadtree
matrices. Yzelman and Bisseling [38] proposed a cache-
oblivious sparse matrix-vector multiplication scheme using
Hilbert curve. Martone et al. [39] presented a recursive
sparse matrix storage format based on an improved Mor-
ton order for matrices with non-power-of-two dimensions.
These works motivate us to implement cache-oblivious MPI
collectives based on Morton order.

6 CONCLUSION

As supercomputers evolve into the exascale era, the number
of cores keeps increasing while the amount of memory per

core is decreasing. Data movement is increasingly expensive
in terms of runtime and power consumption. Thus, it is
critical for parallel programming languages and libraries to
take advantage of memory hierarchies and provide com-
munication operations with high cache efficiency. In this
paper, we propose cache-oblivious algorithms for MPI, the
most popular library for high-performance computing, to
improve the performance of all-to-all style collectives.

For MPI Alltoall and MPI Allgather, we design cache-
oblivious algorithms based on Morton order, and prove
their optimality. We further optimize the cache-oblivious al-
gorithms for NUMA architectures to minimize the distance
of data transfer. We extend the cache-oblivious algorithms
for multi-node machines, regarding DRAM as a private
cache for each node. For neighborhood collectives, we pro-
pose an ordered-buffer approach combined with Morton
order to exploit data locality.

Experimental results show that our cache-oblivious algo-
rithms based on shared heap achieve portable performance
improvement on both single- and multi-node machines. Our
implementation for MPI Alltoall achieves on average 3.11X
speedup over MPICH3 on the UMA-architecture Xeon Phi;
achieves on average 3.03X speedup over MVAPICH2 on the
NUMA-architecture Xeon E7-8890; and achieves on average
2.23X speedup over MVAPICH2 on a 256-node Xeon E5-
2680 for the block sizes less than 1KB. Architecture trends
indicate that deep memory hierarchies will be necessary. We
foresee that the benefit of our cache-oblivious algorithms
will be more significant on such future machines. Our de-
veloped algorithms and cache complexity analysis approach
form a basis for parallel communication algorithms design
on future exascale systems.
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