
XXXX

A Cross-Platform SpMV Framework on Many-Core Architectures1

YUNQUAN ZHANG, State Key Laboratory of Computer Architecture, Institute of Computing
Technologies, Chinese Academy of Sciences.
SHIGANG LI∗, State Key Laboratory of Computer Architecture, Institute of Computing Technologies,
Chinese Academy of Sciences.
SHENGEN YAN∗, SenseTime Group Limited. Department of Information Engineering, Chinese
University of Hong Kong.
HUIYANG ZHOU, Department of Electrical and Computer Engineering, North Carolina State
University.

Sparse matrix-vector multiplication (SpMV) is a key operation in engineering and scientific computing. Al-
though the previous work has shown impressive progress in optimizing SpMV on many-core architectures,
load imbalance and high memory bandwidth remain the critical performance bottlenecks. We present our
novel solutions to these problems, for both GPUs and Intel MIC many-core architectures. First, we devise
a new SpMV format, called blocked compressed common coordinate (BCCOO). BCCOO extends the blocked
common coordinate (COO) by using bit flags to store the row indices to alleviate the bandwidth problem. We
further improve this format by partitioning the matrix into vertical slices for better data locality. Then, to
address the load imbalance problem, we propose a highly efficient matrix-based segmented sum/scan algo-
rithm for SpMV, which eliminates global synchronization. At last, we introduce an auto-tuning framework to
choose optimization parameters. Experimental results show that our proposed framework has a significant
advantage over the existing SpMV libraries. In single-precision, our proposed scheme outperforms clSpMV
COCKTAIL format by 255% on average on AMD FirePro W8000, and outperforms CUSPARSE V7.0 by
73.7% on average and outperforms CSR5 by 53.6% on average on GeForce Titan X; in double-precision, our
proposed scheme outperforms CUSPARSE V7.0 by 34.0% on average and outperforms CSR5 by 16.2% on
average on Tesla K20, and has equivalent performance compared with CSR5 on Intel MIC.

CCS Concepts: rComputing methodologies→ Parallel computing methodologies;

1Extension of Conference Paper. The additional contributions of this manuscript over the previously
published work of S. Yan et al at PPoPP-2014 include:
1. This paper extends our proposed BCCOO format for Intel Xeon Phi processors by introducing inner-block
transpose (Section 3.2.2).
2. We propose a new segmented sum/scan strategy for Intel Xeon Phi processors to explore the potential
performance of their 512-bit SIMD instructions (Section 3.2.2).
3. We present the experimental results on Intel Xeon Phi processor, and compare the performance with
NVIDIA and AMD GPUs in the context of yaSpMV (Section 6).
4. We also extend the yaSpMV library to support double precision (Section 3.2.3) and present the
experimental results in Section 6.
The new material is more than one-third of our PPoPP-2014 paper.

Author’s addresses: Y. Zhang, State Key Laboratory of Computer Architecture, Institute of Computing Tech-
nologies, Chinese Academy of Sciences, Beijing 100190, China; S. Li (∗corresponding author), State Key
Laboratory of Computer Architecture, Institute of Computing Technologies, Chinese Academy of Sciences,
Beijing 100190, China, Email address: shigangli.cs@gmail.com; S. Yan (∗corresponding author), SenseTime
Group Limited. Department of Information Engineering, The Chinese University of Hong Kong, Email ad-
dress: yanshengen@gmail.com; H. Zhou, Department of Electrical and Computer Engineering, North Car-
olina State University, Raleigh, NC.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2016 ACM. 1544-3566/2016/08-ARTXXXX $15.00
DOI: 0000001.0000001

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

XXXX:2 Y. Zhang et al.

Additional Key Words and Phrases: SpMV, Segmented Scan, BCCOO, OpenCL, CUDA, GPU, Intel MIC,
Parallel Algorithms

ACM Reference Format:
Yunquan Zhang, Shigang Li, Shengen Yan and Huiyang Zhou, 2015. A Cross-Platform SpMV Framework
on Many-Core Architectures. ACM Trans. Architec. Code Optim. x, x, Article XXXX (August 2016), 25 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Sparse matrix-vector multiplication (SpMV) is a key linear algebra algorithm and is
heavily used in many important application domains. Many-core architectures feature
high computational throughput and memory access bandwidth, which are the promis-
ing targets to accelerate the workloads like SpMV. According to the granularity of each
core, many-core architectures can be divided into two categories. The first is based on
massive light cores, like NVIDIA and AMD GPUs, and high throughput is achieved by
massive fine-grained parallelism. The second is based on many heavy cores, in which
both coarse-grained and fine-grained parallelism are supported. Intel Many Integrat-
ed Core (Intel MIC) architecture belongs to the second category. This paper aims at
proposing a high performance SpMV framework for these two kinds of many-core ar-
chitectures.

Although the sequential implementation of SpMV is straightforward, its parallel im-
plementation is quite challenging, especially on many-core architectures. Firstly, since
the non-zeros in a matrix may not be evenly distributed across different rows, the row-
based parallelization usually suffers from the load imbalance problem. This problem is
more severe on GPU architectures, since the threads operate in the single-instruction
multiple-thread (SIMT) manner and the execution time is literally determined by the
slowest thread. Secondly, SpMV puts high pressure on the memory hierarchy. The ma-
trix data exhibit poor data reuse, as each non-zero element is only used once for com-
puting the corresponding dot product. Besides, the access pattern of the multiplied
vector is irregular, due to the discontinuous locations of the non-zeros in each row. On
GPUs, memory coalescing [Ueng et al. 2008], namely all the threads in a warp access
the consecutive memory address, is a key factor to achieve high memory bandwidth.
However, irregular accesses will destroy memory coalescing, which makes the memory
accesses serialized.

There has been a lot of research on accelerating SpMV by many-core processors. To
reduce the memory footprint size and fully exploit the performance of the many-core
architectures, researcher have proposed a bunch of many-core-oriented storage format-
s, such as COO[Bell and Garland 2009], ELLPACK [Bell and Garland 2009], ELL-R
[Vázquez et al. 2011], SELL [Monakov et al. 2010], BCSR and BELL [Choi et al. 2010],
ESB [Liu et al. 2013], and SELL-C-σ [Kreutzer et al. 2014]. On the other hand, the
compressed sparse row (CSR) format is still dominant on traditional CPU architec-
tures because of high performance and good compression. Recent research work [Daga
and Greathouse 2015], [Liu and Schmidt 2015], [Greathouse and Daga 2014] proposed
new algorithms for CSR-based SpMV, which attempted to make the CSR format al-
so achieve high performance on many-core architectures. Furthermore, given the d-
ifferent features of target hardware platforms and different characteristics of sparse
matrices, offline auto-tuning or benchmarking [Choi et al. 2010], [Li et al. 2015] is com-
monly used to improve the performance. Although previous work has achieved impres-
sive performance improvement for SpMV, load imbalance and high memory bandwidth
requirement remain the fundamental performance bottlenecks of SpMV.

In this paper, we propose our novel solution to SpMV. Since the proposed solution is
yet another SpMV framework, we name it as yaSpMV. We first propose a new format
for sparse matrices to alleviate the memory bandwidth pressure. Our new format is

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

A Cross-Platform SpMV Framework on Many-Core Architectures XXXX:3

referred to as blocked compressed common coordinate (BCCOO), as it is built upon the
common coordinate (COO) format. The BCCOO format extends the COO format with
blocking to reduce the size for both row and column index arrays. Then, it uses bit-
flags to drastically reduce the size of the row index array. To improve the data locality
of the multiplied vector, we partition the sparse matrix into vertical slices and align
the slices in a top-down manner. Such vertically-partitioned BCCOO is referred to as
the BCCOO+ format.

To address the load imbalance problem, we design a new highly optimized segment-
ed scan/sum kernel for SpMV. In our approach, each thread processes the same num-
ber of consecutive non-zero blocks and performs sequential segmented scans/sums to
generate partial sum results. Then, each workgroup/thread block will run the parallel
segmented scan on the last partial sum results. When the final dot-product results re-
quire accumulating partial sums across multiple workgroups/thread blocks, adjacent
synchronization [Yan et al. 2013] is used to eliminate the overhead of global synchro-
nization. To further improve the performance of our SpMV kernel, we also introduce
an auto-tuning framework to explore optimization parameters for different sparse ma-
trices and different platforms. The parameters to be tuned form a large search space.
We prune the search space of the parameters using some heuristics and reduce the
auto-tuning time to a few seconds.

The yaSpMV framework is implemented based on OpenCL [Stone et al. 2010], which
supports general purpose parallel programming on heterogeneous computing plat-
forms, including GPUs and Intel MIC. Experimental results show that our proposed
single format fits nearly all of the 20 sparse matrices used in the experiments. In
single-precision, compared with the vendor-tuned library CUSPARSE V7.0, our pro-
posed scheme achieves 73.7% on average on GeForce Titan X; compared with the clSp-
MV [Su and Keutzer 2012], which combines advantages of many existing formats, our
proposed scheme achieves up to 195% and 70% on average on GTX680 GPUs, up to
2617% and 255% on average on AMD FirePro W8000 GPUs; compared with CSR5
[Liu and Vinter 2015], our proposed scheme achieves a performance gain of 53.6%
on average on GeForce Titan X, and 14.9% on average on AMD FirePro W8000. In
double-precision, our proposed scheme outperforms CUSPARSE V7.0 by 34.0% on av-
erage on Tesla K20; and outperforms CSR5 by 16.2% on average on Tesla K20, by 9.7%
on average on AMD FirePro W8000. On Intel MIC, our proposed scheme has almost
equivalent performance compared with CSR5.

The remainder of this paper is organized as follows. Section 2 presents our pro-
posed BCCOO/BCCOO+ format for sparse matrices. Section 3 details our proposed
customized matrix-based segmented scan/sum approach for SpMV. Section 4 summa-
rizes our auto-tuning framework. The experimental methodology and the results are
discussed in Sections 5 and 6, respectively. Section 7 addresses the related work. Sec-
tion 8 concludes the paper.

2. THE BLOCK-BASED COMPRESSED COMMON COORDINATE (BCCOO) FORMAT
Our proposed block-based compressed common coordinate (BCCOO) format builds up-
on the common coordinate (COO) format. In this section, we first present the COO
format as the background, and then introduce the BCCOO format and its extension −
BCCOO+. We will use the sparse matrix in Figure 1 as an example.

2.1. COO Format
The COO format is a widely used format for sparse matrices. It has explicit storage
for the column and row indices for all non-zeros in a sparse matrix. For example, the
matrix in Figure 1 can be represented with a row index array, a column index array,
and a data value array, as shown in Figure 2.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

XXXX:4 Y. Zhang et al.

performance. Although previous work has achieved
impressive performance improvement for SpMV, the load
imbalance problem and the high memory bandwidth
requirement remain the fundamental performance
bottlenecks for SpMV. In this paper, we propose our novel
solution to SpMV.

We first propose a new format for sparse matrices to
alleviate the high memory bandwidth requirement of SpMV.
Our new format is referred to as blocked compressed
common coordinate (BCCOO) as it is built upon the
common coordinate (COO) format. The BCCOO format
extendsthe COOformat with blocking to reduce the size for
both row and column index arrays. Then, it uses bit-flags to
drastically reduce the size of the row index array. To
improve the cache hit rate for accessing the multiplied
vector, we partition a sparse matrix into vertical slices and
align the slices in a top-down manner before applying the
BCCOO format. Such vertical partition-based BCCOO is
referred to as the BCCOO+ format.

To address the load imbalance problem, we revisit the
matrix-based segmented scan and design a new highly
optimized segmented scan/sum kernel for SpMV. In our
approach, each thread processes the same number of
consecutive non-zero blocks and it performs sequential
segmented scans/sums to generate partial sum results. This
way, it avoids the workload imbalance problem and reduces
the memory requirement on the row information associated
with each thread. Then, each workgroup/thread block will
run the parallel segmented scan on the last partial sum
results computed from each of its threads. When the final
dot-product results require accumulating partial sums across
multiple workgroups/thread blocks, adjacent
synchronization[24]is used to eliminate the overhead of
global synchronization.

To further improve the performance of our SpMV kernel,
we introduce an auto-tuning framework to explore
optimization parameters for different sparse matrices and
different platforms. Such optimization parameters include
whether to use texture cache for multiplied vector, whether
to perform transpose online or offline, the suitable block
sizes for our proposed BCCOO/BCCOO+ format, the
number of non-zero blocks to be processed by each thread,
the number of threads in a workgroup, the size of shared
memory(also called local memory in OpenCL[19]) or
registers to be used for intermediate partial sums, etc. As
these parameters form a large search space, we introducea
set of accelerations to reduce the auto-tuning time to a few
seconds.

Our experiments on a set of 20 sparse matrices show that
our proposed single format fits nearly all of the sparse
matricesunder our study. Compared to the vendor-tuned
library CUSPARSE V5.0, our proposed scheme achieves
performance improvement by upto 150% and 42% on
average on GTX480 GPUs, up to 229% and 65% on average
on GTX680 GPUs. Compared to the clSpMV[16], which

combines advantages of many existing formats, our
proposed scheme achieves a performance gain of up to 162%
and 40% on average on GTX480 GPUs, up to 195% and 70%
on average on GTX680GPUs.

The remainder of this paper is organized as follows. Section
2 presents our proposed BCCOO/BCCOO+ format for
sparse matrices. Section 3 details ourproposed customized
matrix-based segmented scan/sum approach for SpMV.
Section 4 summarizes our auto-tuning framework. The
experimental methodology and the results are discussed in
Sections 5 and 6, respectively. Section 7 addresses the
related work. Section 8 concludes the paper.

2. The Block-based Compressed Common
Coordinate (BCCOO) Format
Our proposed block-based compressed common coordinate
format builds upon the common coordinate (COO) format.
In this section, we first present the COO format as the
background and then introduce our BCCOO format and its
extension BCCOO+ format. For illustration, we use the
matrix in Eq. 1 as a running example.

2.1 COO Format
The COO format is a widely used format for sparse matrices.
It has explicit storage for the column and row indices for all
non-zeros in a sparse matrix. For example, the matrix in
Eq.1 can be represented with a row index array, a column
index array, and a data value array, as shown in Figure 1.

Figure 1.The COO format of matrix A.

The parallelization strategy suitable with COO, as shown in
previous work[1], is segmented scan/reduction. As
highlighted in[1][16], the advantage ofthe COO format is
that it does not suffer from the load imbalance problem and
can achieve consistent performance over different types of
sparse matrices. However, the key problem of the COO
format is that it needs to explicitly store both the row index
and the column index for every non-zero data element.
Therefore, it has the worst memory footprint[16].
2.2 BCCOO Format
Our proposed BCCOO format extends the COO format in
two ways. First, we incorporate the block-based format to
the COO format. In block-based formats such as blocked
ELLPACK and blocked CSR[7], a non-zero block is stored
consecutively. This way, one block of data values will share
the same row index and the same column index. Therefore,
the storage overhead of the row index array and the column
index array can be significantly reduced. For matrix A in Eq.
1, if a block size of 2x2 is used, the blocked COO (BCOO)

Row_index = [0		0		0		1		1		1		2		2		2		2		3		3		3		3		3		3]
Col_index = [2		6		7		2		3		6		4		5		6		7		0		1		4		5		6		7]

Value = [a		b			c		d		e		f			g		h			i			j			k		l		m		n		o		p]

A = ൦

0 0 ܽ 0 0 0 ܾ ܿ
0 0 ݀ ݁ 0 0 ݂ 0
0 0 0 0 ݃ ℎ ݅ ݆
݇ ݈ 0 0 ݉ ݊

൪

Fig. 1. An example of sparse matrix.

performance. Although previous work has achieved
impressive performance improvement for SpMV, the load
imbalance problem and the high memory bandwidth
requirement remain the fundamental performance
bottlenecks for SpMV. In this paper, we propose our novel
solution to SpMV.

We first propose a new format for sparse matrices to
alleviate the high memory bandwidth requirement of SpMV.
Our new format is referred to as blocked compressed
common coordinate (BCCOO) as it is built upon the
common coordinate (COO) format. The BCCOO format
extendsthe COOformat with blocking to reduce the size for
both row and column index arrays. Then, it uses bit-flags to
drastically reduce the size of the row index array. To
improve the cache hit rate for accessing the multiplied
vector, we partition a sparse matrix into vertical slices and
align the slices in a top-down manner before applying the
BCCOO format. Such vertical partition-based BCCOO is
referred to as the BCCOO+ format.

To address the load imbalance problem, we revisit the
matrix-based segmented scan and design a new highly
optimized segmented scan/sum kernel for SpMV. In our
approach, each thread processes the same number of
consecutive non-zero blocks and it performs sequential
segmented scans/sums to generate partial sum results. This
way, it avoids the workload imbalance problem and reduces
the memory requirement on the row information associated
with each thread. Then, each workgroup/thread block will
run the parallel segmented scan on the last partial sum
results computed from each of its threads. When the final
dot-product results require accumulating partial sums across
multiple workgroups/thread blocks, adjacent
synchronization[24]is used to eliminate the overhead of
global synchronization.

To further improve the performance of our SpMV kernel,
we introduce an auto-tuning framework to explore
optimization parameters for different sparse matrices and
different platforms. Such optimization parameters include
whether to use texture cache for multiplied vector, whether
to perform transpose online or offline, the suitable block
sizes for our proposed BCCOO/BCCOO+ format, the
number of non-zero blocks to be processed by each thread,
the number of threads in a workgroup, the size of shared
memory(also called local memory in OpenCL[19]) or
registers to be used for intermediate partial sums, etc. As
these parameters form a large search space, we introducea
set of accelerations to reduce the auto-tuning time to a few
seconds.

Our experiments on a set of 20 sparse matrices show that
our proposed single format fits nearly all of the sparse
matricesunder our study. Compared to the vendor-tuned
library CUSPARSE V5.0, our proposed scheme achieves
performance improvement by upto 150% and 42% on
average on GTX480 GPUs, up to 229% and 65% on average
on GTX680 GPUs. Compared to the clSpMV[16], which

combines advantages of many existing formats, our
proposed scheme achieves a performance gain of up to 162%
and 40% on average on GTX480 GPUs, up to 195% and 70%
on average on GTX680GPUs.

The remainder of this paper is organized as follows. Section
2 presents our proposed BCCOO/BCCOO+ format for
sparse matrices. Section 3 details ourproposed customized
matrix-based segmented scan/sum approach for SpMV.
Section 4 summarizes our auto-tuning framework. The
experimental methodology and the results are discussed in
Sections 5 and 6, respectively. Section 7 addresses the
related work. Section 8 concludes the paper.

2. The Block-based Compressed Common
Coordinate (BCCOO) Format
Our proposed block-based compressed common coordinate
format builds upon the common coordinate (COO) format.
In this section, we first present the COO format as the
background and then introduce our BCCOO format and its
extension BCCOO+ format. For illustration, we use the
matrix in Eq. 1 as a running example.

2.1 COO Format
The COO format is a widely used format for sparse matrices.
It has explicit storage for the column and row indices for all
non-zeros in a sparse matrix. For example, the matrix in
Eq.1 can be represented with a row index array, a column
index array, and a data value array, as shown in Figure 1.

Figure 1.The COO format of matrix A.

The parallelization strategy suitable with COO, as shown in
previous work[1], is segmented scan/reduction. As
highlighted in[1][16], the advantage ofthe COO format is
that it does not suffer from the load imbalance problem and
can achieve consistent performance over different types of
sparse matrices. However, the key problem of the COO
format is that it needs to explicitly store both the row index
and the column index for every non-zero data element.
Therefore, it has the worst memory footprint[16].

Row_index ൌ ሾ0 0 0 1 1 1 	2		2		2		2		3		3		3		3		3 3ሿ

Col_index ൌ ሾ2 6 7 2 3 6 	4		5		6		7		0		1		4		5		6 7ሿ

Value ൌ ሾܽ ܾ ܿ ݀ ݁ ݂ 		݊		݉		݈		݇		݆		݅		݄		݃	 ሿ

A ൌ ൦

0 0 ܽ 0 0 0 ܾ ܿ
0 0 ݀ ݁ 0 0 ݂ 0
0 0 0 0 ݃ ݄ ݅ ݆
݇ ݈ 0 0 ݉ ݊

൪

Fig. 2. The COO format of matrix A.

The parallelization strategy suitable with COO is segmented scan/reduction [Bell
and Garland 2009]. As highlighted in [Bell and Garland 2009], [Su and Keutzer 2012],
the advantage of the COO format is that it does not suffer from the load imbalance
problem, and can achieve consistent performance over different types of sparse matri-
ces. However, the key problem of the COO format is that it needs to explicitly store
both the row index and the column index for every non-zero element. Therefore, it has
the worst memory footprint [Su and Keutzer 2012].

2.2. BCCOO Format
The BCCOO format extends the COO format in two ways. First, we combine the block-
based design with the COO format. In block-based formats, such as blocked ELLPACK
and blocked CSR [Choi et al. 2010], one block of data values will share the same row
index and the same column index. Therefore, the storage overhead of the row index
array and the column index array can be significantly reduced. Figure 3 shows the
blocked COO (BCOO) format of the matrix A in Figure 1 with the block size of 2×2.

2.2 BCCOO Format
Our proposed BCCOO format extends the COO format in
two ways. First, we incorporate the block-based format to
the COO format. In block-based formats such as blocked
ELLPACK and blocked CSR[7], a non-zero block is stored
consecutively. This way, one block of data values will share
the same row index and the same column index. Therefore,
the storage overhead of the row index array and the column
index array can be significantly reduced. For matrix A in Eq.
1, if a block size of 2x2 is used, the blocked COO (BCOO)
format has the index arrays and the data value array shown
in Figure 2.

Figure 2.The blocked COO format of matrix A with the block
size of 2x2.

From Figure 2, we can see that there are 5 non-zero blocks.
Both the row index array and the column index array have
been reduced significantly. The first non-zero 2x2 block is

ቀܽ 0
݀ ݁

ቁ and its block-based row index and column index are

0 and 1, respectively. The next non-zero 2x2 block is

൬
ܾ ܿ
݂ 0൰ and its blocked-based row index and column index

are 0 and 3, respectively. Note that in Figure 2, we use two
data value arrays rather than a single array in Figure 1. The
reason is that for a block size with the height larger than 1,
we put different rows in different data value arrays such that
both the row index and column index can be used directly to
index the data in each of the value arrays.Such data
arrangement is also helpful for contiguous memory accesses.
The overhead of the BCOO format, which is shared among
all block-based formats, is the zeros in the data value array
when a non-zero block contains zeros.

Figure 3.The BCCOO format of matrix A with the block size of
2x2.

Our key extension to the COO format is to use a bit flag
array to compress the row index array in a lossless manner.
The bit flag array can be viewed simply as the result of a
difference function being applied to the row index array. For
a difference value larger than 1, we replace it with multiple
1s. Then, we flip 1s and 0s such that a bit value of ‘0’ in the
bit flag array represents a row stop, i.e., the corresponding
value is the last non-zero in a row. A bit value of ‘1’
represents that it is not the last non-zero in a row. The
reason for such representation is that when we compute the
partial sums for dot-product result, using the value ‘0’
eliminates the condition check on the next non-zero for the
end of a row (see Section 3.2). As our bit flag array provides
lossless compression on the row index array, the row index
information can be reconstructed from the bit flag array by
accumulating the number of row stops. We refer to this
format as blocked compressed COO (BCCOO). For matrix
A in Eq. 1, the BCCOO format is shown in Figure 3 with
the block size of 2x2.

Compared to the BCOO format shown in Figure 2, the
column index array and the data value arrays remain the
same. The row index array becomes a bit vector of 5 bits.
Assuming that integers are used for row indices, a
compression ratio of 32 is achieved for the row index array.

In our implementation, in order to remove the control flow
to check the end of the bit flag array, we pad it with bit ‘1’
such that the length of the bit flag array is a multiple of the
working set (i.e., number of non-zero blocks to be processed)
of a workgroup.

Similar to row-index arrays, we can also try to reduce data
transmission required for column index arrays using
difference functions. In our approach, we first apply a
segmented difference function on a column index array with
each segment being the working set of each thread. This
way, there is no inter-thread dependency when
reconstructing the column indices. The resulting difference
array is stored using the short data type instead of the
regular integer type. If a difference value is beyond the
range of a signed short, we replace it with a fixed value -1,
which means that the original column index array needs to
be accessed for this particular index.

(a)

 (b)

Bit Flag ൌ ሾ0 0 0 1 0ሿ

Value ൌ ൬
ሾܽ 0 0 0 ܾ ܿ ݃ ݄			݅			݆ሿ
ሾ݀ ݁ ݇ ݈ ݂ 0 ݉ ሿ				݊

൰

Col_index ൌ ሾ1 0 3 2 3ሿ (uncompressed)

B ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 ܽ 0
0 0 ݀ ݁
0 0 0 0
݇ ݈ 0 0
0 0 ܾ ܿ
0 0 ݂ 0
݃ ݄ ݅ ݆
݉ ݊ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

Bit	Flag ൌ ሾ1		0		1		1		0ሿ

Col_index ൌ ሾ1		3		0		2		3ሿ

Value ൌ ൬
ሾܽ		0		ܾ		ܿ		0		0	݃			݄			݅ ݆ሿ
ሾ݀		݁		݂		0		݇		݈		݉		݊		 ሿ

൰

Row_index ൌ ሾ0		0		1		1		1ሿ

Col_index ൌ ሾ1		3		0		2		3ሿ

Value ൌ ൬
ሾܽ		0		ܾ		ܿ		0		0		݃		݄			݅ ݆ሿ
ሾ݀		݁		݂		0		݇		݈		݉		݊		 ሿ

൰

Fig. 3. The blocked COO format of matrix A with the block size of 2×2.

From Figure 3, we can see that there are 5 non-zero blocks. Both the row index
array and the column index array have been reduced significantly. The first non-zero

2×2 block is
(
a 0
d e

)
, and its block-based row index and column index are 0 and 1,

respectively. The next non-zero 2×2 block is
(
b c
f 0

)
, and its blocked-based row index

and column index are 0 and 3, respectively. Note that in Figure 3, we use two arrays
rather than a single array to store the data value. For a block size with the height
larger than 1, we put different rows in different arrays, such that both the row index
and column index can be used directly to index the data in each of the value arrays.
Such data arrangement is also helpful for contiguous memory accesses. The same as
all the block-based formats, the BCOO format may contain zero elements even in a
non-zero block.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

A Cross-Platform SpMV Framework on Many-Core Architectures XXXX:5

2.2 BCCOO Format
Our proposed BCCOO format extends the COO format in
two ways. First, we incorporate the block-based format to
the COO format. In block-based formats such as blocked
ELLPACK and blocked CSR[7], a non-zero block is stored
consecutively. This way, one block of data values will share
the same row index and the same column index. Therefore,
the storage overhead of the row index array and the column
index array can be significantly reduced. For matrix A in Eq.
1, if a block size of 2x2 is used, the blocked COO (BCOO)
format has the index arrays and the data value array shown
in Figure 2.

Figure 2.The blocked COO format of matrix A with the block
size of 2x2.

From Figure 2, we can see that there are 5 non-zero blocks.
Both the row index array and the column index array have
been reduced significantly. The first non-zero 2x2 block is

ቀܽ 0
݀ ݁

ቁ and its block-based row index and column index are

0 and 1, respectively. The next non-zero 2x2 block is

൬
ܾ ܿ
݂ 0൰ and its blocked-based row index and column index

are 0 and 3, respectively. Note that in Figure 2, we use two
data value arrays rather than a single array in Figure 1. The
reason is that for a block size with the height larger than 1,
we put different rows in different data value arrays such that
both the row index and column index can be used directly to
index the data in each of the value arrays.Such data
arrangement is also helpful for contiguous memory accesses.
The overhead of the BCOO format, which is shared among
all block-based formats, is the zeros in the data value array
when a non-zero block contains zeros.

Figure 3.The BCCOO format of matrix A with the block size of
2x2.

Our key extension to the COO format is to use a bit flag
array to compress the row index array in a lossless manner.
The bit flag array can be viewed simply as the result of a
difference function being applied to the row index array. For
a difference value larger than 1, we replace it with multiple
1s. Then, we flip 1s and 0s such that a bit value of ‘0’ in the
bit flag array represents a row stop, i.e., the corresponding
value is the last non-zero in a row. A bit value of ‘1’
represents that it is not the last non-zero in a row. The
reason for such representation is that when we compute the
partial sums for dot-product result, using the value ‘0’
eliminates the condition check on the next non-zero for the
end of a row (see Section 3.2). As our bit flag array provides
lossless compression on the row index array, the row index
information can be reconstructed from the bit flag array by
accumulating the number of row stops. We refer to this
format as blocked compressed COO (BCCOO). For matrix
A in Eq. 1, the BCCOO format is shown in Figure 3 with
the block size of 2x2.

Compared to the BCOO format shown in Figure 2, the
column index array and the data value arrays remain the
same. The row index array becomes a bit vector of 5 bits.
Assuming that integers are used for row indices, a
compression ratio of 32 is achieved for the row index array.

In our implementation, in order to remove the control flow
to check the end of the bit flag array, we pad it with bit ‘1’
such that the length of the bit flag array is a multiple of the
working set (i.e., number of non-zero blocks to be processed)
of a workgroup.

Similar to row-index arrays, we can also try to reduce data
transmission required for column index arrays using
difference functions. In our approach, we first apply a
segmented difference function on a column index array with
each segment being the working set of each thread. This
way, there is no inter-thread dependency when
reconstructing the column indices. The resulting difference
array is stored using the short data type instead of the
regular integer type. If a difference value is beyond the
range of a signed short, we replace it with a fixed value -1,
which means that the original column index array needs to
be accessed for this particular index.

(a)

 (b)

Bit Flag ൌ ሾ0 0 0 1 0ሿ

Value ൌ ൬
ሾܽ 0 0 0 ܾ ܿ ݃ ݄			݅			݆ሿ
ሾ݀ ݁ ݇ ݈ ݂ 0 ݉ ሿ				݊

൰

Col_index ൌ ሾ1 0 3 2 3ሿ (uncompressed)

B ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 ܽ 0
0 0 ݀ ݁
0 0 0 0
݇ ݈ 0 0
0 0 ܾ ܿ
0 0 ݂ 0
݃ ݄ ݅ ݆
݉ ݊ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

Bit	Flag ൌ ሾ1		0		1		1		0ሿ

Col_index ൌ ሾ1		3		0		2		3ሿ

Value ൌ ൬
ሾܽ		0		ܾ		ܿ		0		0	݃			݄			݅ ݆ሿ
ሾ݀		݁		݂		0		݇		݈		݉		݊		 ሿ

൰

Row_index ൌ ሾ0		0		1		1		1ሿ

Col_index ൌ ሾ1		3		0		2		3ሿ

Value ൌ ൬
ሾܽ		0		ܾ		ܿ		0		0		݃		݄			݅ ݆ሿ
ሾ݀		݁		݂		0		݇		݈		݉		݊		 ሿ

൰

Fig. 4. The BCCOO format of matrix A with the block size of 2×2.

Our key extension to the BCOO format is to use a bit flag array to compress the
row index array. We first calculate the difference value of each pair of the adjacent
elements in the row index array. If the difference value is not greater than 1, we set
the corresponding bit in the bit flag array to the difference value. If the difference value
is greater than 1, we set a corresponding number of 1s in the bit flag array. Then, we
flip the bits of 1s and 0s in the bit flag array, such that a bit value of ’0’ represents a
row stop, namely, the corresponding block is the last non-zero block in the row. A bit
value of ’1’ represents that the corresponding block is not the last non-zero block in a
row. When calculating the partial sums, this representation can eliminate the row stop
check for each non-zero block (see Section 3.2 for details). The row index information
can be reconstructed from the bit flag array by accumulating the number of row stops.
Thus, the row index array is compressed in a lossless manner. We refer to this format
as blocked compressed COO (BCCOO). For matrix A in Figure 1, the BCCOO format
with the block size of 2×2 is shown in Figure 4.

Compared with the BCOO format shown in Figure 3, the column index array and the
data value arrays remain the same. The row index array becomes a bit vector of 5 bits.
Assuming that integers are used for row indices of BCOO format, BCCOO achieves a
compression ratio of 32 for the row index array. In order to remove the control flow to
check the end of the bit flag array, we pad it with bit ’1’, such that the length of the bit
flag array is a multiple the number non-zero blocks processed by a workgroup.

Similar to row-index arrays, we also try to reduce the data transmission overhead
for the column index arrays using difference functions. Firstly, we logically partition
the column index array into multiple segments, each of which is corresponding to the
working set (i.e., the total non-zero blocks to be processed) of a thread. Then, we use
a difference function on each segment of the column index array. In this way, there
is no inter-thread dependency when reconstructing the column indices. The resulting
difference value array is stored using the short data type instead of the regular integer
type. If a difference value is beyond the range of a signed short, we replace it with a
fixed value ’-1’, which means that the original column index array needs to be accessed
for this particular index.

way, there is no inter-thread dependency when reconstructing the column indices. The resulting

difference array is stored using the short data type instead of the regular integer type. If a difference

value is beyond the range of a signed short, we replace it with a fixed value -1, which means that the

original column index array needs to be accessed for this particular index.

B ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 ܽ 0
0 0 ݀ ݁
0 0 0 0
݇ ݈ 0 0
0 0 ܾ ܿ
0 0 ݂ 0
݃ ݄ ݅ ݆
݉ ݊ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (a) (b)

Bit Flag ൌ ሾ0 0 0 1		0ሿ

Value ൌ ൬
ሾܽ 0 0 0 	ܾ		ܿ		݃			݄			݅			݆ሿ
ሾ݀ ݁ ݇ ݈ ሿ				݊		݉		0		݂	

൰

Col_index ൌ ሾ1		0		3		2		3ሿ (uncompressed)

(a) The vertically sliced and
rearranged matrix of matrix A.

way, there is no inter-thread dependency when reconstructing the column indices. The resulting

difference array is stored using the short data type instead of the regular integer type. If a difference

value is beyond the range of a signed short, we replace it with a fixed value -1, which means that the

original column index array needs to be accessed for this particular index.

B ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 ܽ 0
0 0 ݀ ݁
0 0 0 0
݇ ݈ 0 0
0 0 ܾ ܿ
0 0 ݂ 0
݃ ݄ ݅ ݆
݉ ݊ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (a) (b)

Bit	Flag ൌ ሾ0 0 0 1 0ሿ

Value ൌ ൬
ሾܽ 0 0 0 ܾ ܿ ݃ ݄ ݅ ݆ሿ
ሾ݀ ݁ ݇ ݈ ݂ 0 ݉ ݊ ሿ

൰

Col_index ൌ ሾ1		0		3		2		3ሿ (uncompressed)

(b) The bit flag, column index, and data value
arrays.

Fig. 5. The BCCOO+ format of matrix A in Figure 1.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

XXXX:6 Y. Zhang et al.

2.3. BCCOO+ Format
We also propose an extension to our BCCOO format to improve the locality of the
accesses to the multiplied vector, referred to as the BCCOO+ format. In this format,
we first partition a sparse matrix into vertical slices, and then align the slices in a
top-down manner. Next, we apply the BCCOO format on the vertically-sliced and re-
arranged matrix. However, the column index array is generated based on the block
coordinates in the original matrix, rather than the transformed matrix. This is be-
cause we need the original column indices to locate the corresponding elements in the
multiplied vector for dot-product operations. For matrix A in Figure 1, the vertically-
sliced and rearranged matrix becomes matrix B in Figure 5(a), in which the number
of slices is 2 and the slice width is 4. The BCCOO+ format of A is shown in Figure 5(b)
with the block size of 2×2. As shown in Figure 5, the bit flag array encodes that there
is only one non-zero block in row 0, row 1, and row 2, and two non-zero blocks in row
3. The column indices of these blocks, however, are determined from matrix A rather

than matrix B. Taking the 2×2 block
(
g h
m n

)
as an example, its column index value

indicates that it resides at column 2 in matrix A.
The benefit of BCCOO+ format can be illustrated by the matrix-vector multiplication

between matrix A and vector ~y, namely, A*~y. Different rows in the same vertical slice
use the same segment of ~y to compute the dot-product. Thus, the temporal locality
of vector ~y is improved by BCCOO+. However, since the BCCOO+ format breaks the
original matrix into slices, the intermediate results of each slice need to be combined
to generate the final results. For matrix A in Figure 1, the computation of A*~y based
on the BCCOO+ format is shown in Figure 6. We can see that it is necessary to use
a temporary buffer to store the intermediate results, and invoke an additional kernel
to combine them. Suppose the original matrix is divided into s slices and the length of
~y is l. The size of the temporary buffer is calculated by s ∗ l ∗ sizeof(datatype). Extra
memory overhead hurts the performance. Thus, the BCCOO+ format is not always
preferred over the BCCOO format. We resort to auto-tuning to determine either the
BCCOO or BCCOO+ format should be used.

Figure 4. The BCCOO+ format of matrix A in Eq. 1. (a) The
vertically sliced and rearranged matrix of matrix A. (b) The bit
flag array, the column index array, and the data value arrays.

2.3 BCCOO+ Format
We also propose an extension to our BCCOO format to
improve the locality of the accesses to the multiplied vector,
referred to as the BCCOO+ format. In this format, we first
partition a sparse matrix into vertical slices and then align
the slices in a top-down manner. Then, we apply the
BCCOO format on the vertically sliced and rearranged
matrix with an exception on column indices. The column
index array is generatedbased on the block coordinates in
the original matrix rather than the transformed matrix as we
need original column indices to locate the corresponding
elements in the multiplied vector for dot-product operations.
For matrix A in Eq. 1, the vertically sliced and rearranged
matrix becomes matrix B in Figure4a if the number of slice
is 2 and the slice width is 4. The BCCOO+ format of A is
shown in Figure 4b when the block size 2x2 is used.
As shown in Figure 4, the bit flag array encodes that there is
only one non-zero block in row 0, row 1, and row 2. Row 3,
in contrast, contains 2 non-zero blocks. The column indices
of these blocks, however, are determined from matrix A
rather than matrix B. Taking the 2x2 block ቀ݃ ℎ

݉ ݊ቁ as an
example, it resides at column 2 in matrix A,which is why its
column index value is 2 as shown in Figure 4b.
The benefit of BCCOO+ format can be illustrated with
matrix-vector multiplication between matrix A and vector y,
i.e., A*⃗ݕ. Different rows in the same vertical slice, e.g., slice
0, will all use y[0]~y[3]. Similarly, all the rows in slice 1
will use y[4]~y[7] to compute the dot-product. As the block
ቀ݃ ℎ
݉ ݊ቁ is in slice 1, it needs to use y[4]~y[7], with the

block size of 2x2, its column index of 2 provides the
necessary information for indexing y[4] and y[5] from the
vector ⃗ݕ.

Figure 5.Matrix-vector multiplication as a sum of the products
between its vertical slices and the corresponding vector
segments.

Since the BCCOO+ format breaks the original matrix into
slices, after performing the matrix-vector multiplication on
each slice, the intermediate results need to be combined to
generate the final results. Using our running example of
matrix A in Eq. 1, the derivation of A*⃗ݕis shown in Figure
5.Therefore, when using the BCCOO+ format, it is

necessary to use a temporary buffer to store the intermediate
results and to invoke an additional kernel to combine them.
Depending on the number of slices, the size of the
temporary buffer can be large, thereby hurting the
performance. As a result, the BCCOO+ format is not always
preferred over the BCCOO format and we resort to auto-
tuning to determine either the BCCOO or BCCOO+ format
should be used.
2.4 Auxiliary Information for SpMV
To facilitate the computation of SpMV, the following
information is computed and stored along with the
BCCOO/BCCOO+ format. First, based on the number of
non-zeros that each thread will process, we compute the
location of the first result generated by each thread, i.e., the
row index that the result belongs to. Usingmatrix C in Eq. 2
as an example, in which each element is a blockof data. To
simplify the discussion, we assume the block size as nx1. As
discussed in Section 2.2, for a block size with the height
larger than 1, each row will be stored in a separate value
array. The BCCOO format of matrix C is shown in Figure
6a. As there are 16 non-zero data blocks, assuming each
thread will process 4 non-zero blocks, we will compute the
row index that the first result generated by each thread
belongs to. Such information can be computed with a scan
operation on the bitwise inverse of the bit flag array in the
BCCOO format. In this example, thread 0 processes the first
4 non-zero data blocks A’, B’, C’, and D’ and its first
computation result, i.e.,A’*y’, is part of the final result for
the dot-product between row 0 and the multiplied vector. So,
the result entry is set to 0. Similarly, thread 1 processes the
next four non-zero blocks E’, F’, G’, and H’. As block E’
still belongs to row 0, the entry for the first result of thread 1
is set as 0.

				Bit	Flag = [1		1		1		1		0		1		0		1		1		0		1		1		1		1		1		0]	

								Value = 	[′ܲ		′ܱ		′ܰ		′ܯ		′ܮ		′ܭ		′ܬ		′ܫ		′ܪ		′ܩ		′ܨ		′ܧ		′ܦ		′ܥ		′ܤ		ᇱܣ]
Col_index = [0		2		4		6		7		3		6		1		3		5		1		2		3		5		6		7] (uncompressed)	

C = ൦

′ܣ 0 ′ܤ 0 ′ܥ 0 ′ܦ ′ܧ
0 0 0 ′ܨ 0 0 ′ܩ 0
0 ′ܪ 0 ′ܫ 0 ′ܬ 0 0
0 ′ܭ ′ܮ ′ܯ 0 ܰ′ ܱ′ ܲ′

൪

A ∗ ݕ⃗ =
0 0
0 0

ܽ 0
݀ ݁

0 0
݇ ݈

0 0
0 0

 ∗

⎣
⎢
⎢
⎡
[0]ݕ
[1]ݕ
[2]ݕ
⎦[3]ݕ

⎥
⎥
⎤
+ ൦

0 0
0 0

ܾ ܿ
݂ 0

݃ ℎ
݉ ݊

݅ ݆

൪ ∗

⎣
⎢
⎢
⎡
[4]ݕ
[5]ݕ
[6]ݕ
⎦[7]ݕ

⎥
⎥
⎤

Bit	Flag = [1		1		1		1		0		1		0		1		1		0		1		1		1		1		1		0]	
	

	Result	Entry:			0																0																2																3							

Fig. 6. Matrix-vector multiplication as a sum of the products between its vertical slices and the correspond-
ing vector segments.

2.4. Auxiliary Information for SpMV
To facilitate the computation of SpMV, the following information is computed and s-
tored along with the BCCOO/BCCOO+ format. First, based on the number of non-zeros
that each thread will process, we compute the location of the first result generated by
each thread, namely, the row index that the result belongs to. We use matrix C in Fig-
ure 7(a) as an example, in which each element represents a data block. To simplify the
discussion, we assume the block size is n×1. As discussed in Section 2.2, for a block size
with the height larger than 1, each row will be stored in a separate value array. The
BCCOO format of matrix C is shown in Figure 7(b). Assuming each thread processes
4 non-zero blocks, we will compute the row index of the first result generated by each
thread. Such information can be computed by a scan operation on the bitwise inverse

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

A Cross-Platform SpMV Framework on Many-Core Architectures XXXX:7

of the bit flag array in the BCCOO format. In this example, thread 0 processes the first
4 non-zero data blocks A′, B′, C ′, and D′. The first computation result, namely, A′*y[0],
is part of the final result for the dot-product between row 0 and the multiplied vector.
Thus, the result entry for thread 0 is set to 0. Similarly, thread 1 processes the next
four non-zero blocks E′, F ′, G′, and H ′. As block E′ still belongs to row 0, the result
entry for thread 1 is also set to 0.

Figure 4. The BCCOO+ format of matrix A in Eq. 1. (a) The
vertically sliced and rearranged matrix of matrix A. (b) The bit
flag array, the column index array, and the data value arrays.

2.3 BCCOO+ Format
We also propose an extension to our BCCOO format to
improve the locality of the accesses to the multiplied vector,
referred to as the BCCOO+ format. In this format, we first
partition a sparse matrix into vertical slices and then align
the slices in a top-down manner. Then, we apply the
BCCOO format on the vertically sliced and rearranged
matrix with an exception on column indices. The column
index array is generatedbased on the block coordinates in
the original matrix rather than the transformed matrix as we
need original column indices to locate the corresponding
elements in the multiplied vector for dot-product operations.
For matrix A in Eq. 1, the vertically sliced and rearranged
matrix becomes matrix B in Figure4a if the number of slice
is 2 and the slice width is 4. The BCCOO+ format of A is
shown in Figure 4b when the block size 2x2 is used.
As shown in Figure 4, the bit flag array encodes that there is
only one non-zero block in row 0, row 1, and row 2. Row 3,
in contrast, contains 2 non-zero blocks. The column indices
of these blocks, however, are determined from matrix A

rather than matrix B. Taking the 2x2 block ቀ݃ ݄
݉ ݊

ቁ as an

example, it resides at column 2 in matrix A,which is why its
column index value is 2 as shown in Figure 4b.

The benefit of BCCOO+ format can be illustrated with
matrix-vector multiplication between matrix A and vector y,
i.e., A*ݕԦ. Different rows in the same vertical slice, e.g., slice
0, will all use y[0]~y[3]. Similarly, all the rows in slice 1
will use y[4]~y[7] to compute the dot-product. As the block

ቀ݃ ݄
݉ ݊

ቁ is in slice 1, it needs to use y[4]~y[7], with the

block size of 2x2, its column index of 2 provides the
necessary information for indexing y[4] and y[5] from the
vector ݕԦ.

Figure 5.Matrix-vector multiplication as a sum of the products
between its vertical slices and the corresponding vector
segments.

Since the BCCOO+ format breaks the original matrix into
slices, after performing the matrix-vector multiplication on
each slice, the intermediate results need to be combined to
generate the final results. Using our running example of
matrix A in Eq. 1, the derivation of A*ݕԦis shown in Figure
5.Therefore, when using the BCCOO+ format, it is

necessary to use a temporary buffer to store the intermediate
results and to invoke an additional kernel to combine them.
Depending on the number of slices, the size of the
temporary buffer can be large, thereby hurting the
performance. As a result, the BCCOO+ format is not always
preferred over the BCCOO format and we resort to auto-
tuning to determine either the BCCOO or BCCOO+ format
should be used.

2.4 Auxiliary Information for SpMV
To facilitate the computation of SpMV, the following
information is computed and stored along with the
BCCOO/BCCOO+ format. First, based on the number of
non-zeros that each thread will process, we compute the
location of the first result generated by each thread, i.e., the
row index that the result belongs to. Usingmatrix C in Eq. 2
as an example, in which each element is a blockof data. To
simplify the discussion, we assume the block size as nx1. As
discussed in Section 2.2, for a block size with the height
larger than 1, each row will be stored in a separate value
array. The BCCOO format of matrix C is shown in Figure
6a. As there are 16 non-zero data blocks, assuming each
thread will process 4 non-zero blocks, we will compute the
row index that the first result generated by each thread
belongs to. Such information can be computed with a scan
operation on the bitwise inverse of the bit flag array in the
BCCOO format. In this example, thread 0 processes the first
4 non-zero data blocks A’, B’, C’, and D’ and its first
computation result, i.e.,A’*y’, is part of the final result for
the dot-product between row 0 and the multiplied vector. So,
the result entry is set to 0. Similarly, thread 1 processes the
next four non-zero blocks E’, F’, G’, and H’. As block E’
still belongs to row 0, the entry for the first result of thread 1
is set as 0.

Bit Flag ൌ ሾ1 1 1 1 0 1 0		1		1		0		1		1		1		1		1 0ሿ

Value ൌ ሾܣᇱ ′ܤ ′ܥ ′ܦ ′ܮ		′ܭ		′ܬ		′ܫ		′ܪ		′ܩ		′ܨ		′ܧ ′ܯ ܰ′ ܱ′ ܲ′ሿ

Col_index ൌ ሾ0 2 4 6 7 3 6		1		3		5		1		2		3		5		6 7ሿ (uncompressed)

C ൌ ൦

′ܣ 0 ′ܤ 0 ′ܥ 0 ′ܦ ′ܧ
0 0 0 ′ܨ 0 0 ′ܩ 0
0 ′ܪ 0 ′ܫ 0 ′ܬ 0 0
0 ′ܭ ′ܮ ′ܯ 0 ܰ′ ܱ′ ܲ′

൪

ܣ ∗ Ԧݕ ൌ

0 0
0 0

ܽ 0
݀ ݁

0 0
݇ ݈

0 0
0 0

 ∗

ۏ
ێ
ێ
ۍ
ሾ0ሿݕ
ሾ1ሿݕ
ሾ2ሿݕ
ےሾ3ሿݕ

ۑ
ۑ
ې
 ൦

0 0
0 0

ܾ ܿ
݂ 0

݃ ݄
݉ ݊

݅ ݆

൪ ∗

ۏ
ێ
ێ
ۍ
ሾ4ሿݕ
ሾ5ሿݕ
ሾ6ሿݕ
ےሾ7ሿݕ

ۑ
ۑ
ې

Bit Flag ൌ ሾ1 1 1 1 0 1		0		1		1		0		1		1		1		1 1 0ሿ

Result	Entry:			0																0																2														 	3						

(a) Sparse Matrix C.

Figure 4. The BCCOO+ format of matrix A in Eq. 1. (a) The
vertically sliced and rearranged matrix of matrix A. (b) The bit
flag array, the column index array, and the data value arrays.

2.3 BCCOO+ Format
We also propose an extension to our BCCOO format to
improve the locality of the accesses to the multiplied vector,
referred to as the BCCOO+ format. In this format, we first
partition a sparse matrix into vertical slices and then align
the slices in a top-down manner. Then, we apply the
BCCOO format on the vertically sliced and rearranged
matrix with an exception on column indices. The column
index array is generatedbased on the block coordinates in
the original matrix rather than the transformed matrix as we
need original column indices to locate the corresponding
elements in the multiplied vector for dot-product operations.
For matrix A in Eq. 1, the vertically sliced and rearranged
matrix becomes matrix B in Figure4a if the number of slice
is 2 and the slice width is 4. The BCCOO+ format of A is
shown in Figure 4b when the block size 2x2 is used.
As shown in Figure 4, the bit flag array encodes that there is
only one non-zero block in row 0, row 1, and row 2. Row 3,
in contrast, contains 2 non-zero blocks. The column indices
of these blocks, however, are determined from matrix A

rather than matrix B. Taking the 2x2 block ቀ݃ ݄
݉ ݊

ቁ as an

example, it resides at column 2 in matrix A,which is why its
column index value is 2 as shown in Figure 4b.

The benefit of BCCOO+ format can be illustrated with
matrix-vector multiplication between matrix A and vector y,
i.e., A*ݕԦ. Different rows in the same vertical slice, e.g., slice
0, will all use y[0]~y[3]. Similarly, all the rows in slice 1
will use y[4]~y[7] to compute the dot-product. As the block

ቀ݃ ݄
݉ ݊

ቁ is in slice 1, it needs to use y[4]~y[7], with the

block size of 2x2, its column index of 2 provides the
necessary information for indexing y[4] and y[5] from the
vector ݕԦ.

Figure 5.Matrix-vector multiplication as a sum of the products
between its vertical slices and the corresponding vector
segments.

Since the BCCOO+ format breaks the original matrix into
slices, after performing the matrix-vector multiplication on
each slice, the intermediate results need to be combined to
generate the final results. Using our running example of
matrix A in Eq. 1, the derivation of A*ݕԦis shown in Figure
5.Therefore, when using the BCCOO+ format, it is

necessary to use a temporary buffer to store the intermediate
results and to invoke an additional kernel to combine them.
Depending on the number of slices, the size of the
temporary buffer can be large, thereby hurting the
performance. As a result, the BCCOO+ format is not always
preferred over the BCCOO format and we resort to auto-
tuning to determine either the BCCOO or BCCOO+ format
should be used.

2.4 Auxiliary Information for SpMV
To facilitate the computation of SpMV, the following
information is computed and stored along with the
BCCOO/BCCOO+ format. First, based on the number of
non-zeros that each thread will process, we compute the
location of the first result generated by each thread, i.e., the
row index that the result belongs to. Usingmatrix C in Eq. 2
as an example, in which each element is a blockof data. To
simplify the discussion, we assume the block size as nx1. As
discussed in Section 2.2, for a block size with the height
larger than 1, each row will be stored in a separate value
array. The BCCOO format of matrix C is shown in Figure
6a. As there are 16 non-zero data blocks, assuming each
thread will process 4 non-zero blocks, we will compute the
row index that the first result generated by each thread
belongs to. Such information can be computed with a scan
operation on the bitwise inverse of the bit flag array in the
BCCOO format. In this example, thread 0 processes the first
4 non-zero data blocks A’, B’, C’, and D’ and its first
computation result, i.e.,A’*y’, is part of the final result for
the dot-product between row 0 and the multiplied vector. So,
the result entry is set to 0. Similarly, thread 1 processes the
next four non-zero blocks E’, F’, G’, and H’. As block E’
still belongs to row 0, the entry for the first result of thread 1
is set as 0.

Bit Flag ൌ ሾ1 1 1 1 0 1 0		1		1		0		1		1		1		1		1 0ሿ

Value ൌ ሾܣᇱ ′ܤ ′ܥ ′ܦ ′ܮ		′ܭ		′ܬ		′ܫ		′ܪ		′ܩ		′ܨ		′ܧ ′ܯ ܰ′ ܱ′ ܲ′ሿ

Col_index ൌ ሾ0 2 4 6 7 3 6		1		3		5		1		2		3		5		6 7ሿ (uncompressed)

C ൌ ൦

′ܣ 0 ′ܤ 0 ′ܥ 0 ′ܦ ′ܧ
0 0 0 ′ܨ 0 0 ′ܩ 0
0 ′ܪ 0 ′ܫ 0 ′ܬ 0 0
0 ′ܭ ′ܮ ′ܯ 0 ܰ′ ܱ′ ܲ′

൪

ܣ ∗ Ԧݕ ൌ

0 0
0 0

ܽ 0
݀ ݁

0 0
݇ ݈

0 0
0 0

 ∗

ۏ
ێ
ێ
ۍ
ሾ0ሿݕ
ሾ1ሿݕ
ሾ2ሿݕ
ےሾ3ሿݕ

ۑ
ۑ
ې
 ൦

0 0
0 0

ܾ ܿ
݂ 0

݃ ݄
݉ ݊

݅ ݆

൪ ∗

ۏ
ێ
ێ
ۍ
ሾ4ሿݕ
ሾ5ሿݕ
ሾ6ሿݕ
ےሾ7ሿݕ

ۑ
ۑ
ې

Bit Flag ൌ ሾ1 1 1 1 0 1		0		1		1		0		1		1		1		1 1 0ሿ

Result	Entry:			0																0																2														 	3						

(b) The BCCOO format of Matrix C.

Figure 4. The BCCOO+ format of matrix A in Eq. 1. (a) The
vertically sliced and rearranged matrix of matrix A. (b) The bit
flag array, the column index array, and the data value arrays.

2.3 BCCOO+ Format
We also propose an extension to our BCCOO format to
improve the locality of the accesses to the multiplied vector,
referred to as the BCCOO+ format. In this format, we first
partition a sparse matrix into vertical slices and then align
the slices in a top-down manner. Then, we apply the
BCCOO format on the vertically sliced and rearranged
matrix with an exception on column indices. The column
index array is generatedbased on the block coordinates in
the original matrix rather than the transformed matrix as we
need original column indices to locate the corresponding
elements in the multiplied vector for dot-product operations.
For matrix A in Eq. 1, the vertically sliced and rearranged
matrix becomes matrix B in Figure4a if the number of slice
is 2 and the slice width is 4. The BCCOO+ format of A is
shown in Figure 4b when the block size 2x2 is used.
As shown in Figure 4, the bit flag array encodes that there is
only one non-zero block in row 0, row 1, and row 2. Row 3,
in contrast, contains 2 non-zero blocks. The column indices
of these blocks, however, are determined from matrix A

rather than matrix B. Taking the 2x2 block ቀ݃ ݄
݉ ݊

ቁ as an

example, it resides at column 2 in matrix A,which is why its
column index value is 2 as shown in Figure 4b.

The benefit of BCCOO+ format can be illustrated with
matrix-vector multiplication between matrix A and vector y,
i.e., A*ݕԦ. Different rows in the same vertical slice, e.g., slice
0, will all use y[0]~y[3]. Similarly, all the rows in slice 1
will use y[4]~y[7] to compute the dot-product. As the block

ቀ݃ ݄
݉ ݊

ቁ is in slice 1, it needs to use y[4]~y[7], with the

block size of 2x2, its column index of 2 provides the
necessary information for indexing y[4] and y[5] from the
vector ݕԦ.

Figure 5.Matrix-vector multiplication as a sum of the products
between its vertical slices and the corresponding vector
segments.

Since the BCCOO+ format breaks the original matrix into
slices, after performing the matrix-vector multiplication on
each slice, the intermediate results need to be combined to
generate the final results. Using our running example of
matrix A in Eq. 1, the derivation of A*ݕԦis shown in Figure
5.Therefore, when using the BCCOO+ format, it is

necessary to use a temporary buffer to store the intermediate
results and to invoke an additional kernel to combine them.
Depending on the number of slices, the size of the
temporary buffer can be large, thereby hurting the
performance. As a result, the BCCOO+ format is not always
preferred over the BCCOO format and we resort to auto-
tuning to determine either the BCCOO or BCCOO+ format
should be used.

2.4 Auxiliary Information for SpMV
To facilitate the computation of SpMV, the following
information is computed and stored along with the
BCCOO/BCCOO+ format. First, based on the number of
non-zeros that each thread will process, we compute the
location of the first result generated by each thread, i.e., the
row index that the result belongs to. Usingmatrix C in Eq. 2
as an example, in which each element is a blockof data. To
simplify the discussion, we assume the block size as nx1. As
discussed in Section 2.2, for a block size with the height
larger than 1, each row will be stored in a separate value
array. The BCCOO format of matrix C is shown in Figure
6a. As there are 16 non-zero data blocks, assuming each
thread will process 4 non-zero blocks, we will compute the
row index that the first result generated by each thread
belongs to. Such information can be computed with a scan
operation on the bitwise inverse of the bit flag array in the
BCCOO format. In this example, thread 0 processes the first
4 non-zero data blocks A’, B’, C’, and D’ and its first
computation result, i.e.,A’*y’, is part of the final result for
the dot-product between row 0 and the multiplied vector. So,
the result entry is set to 0. Similarly, thread 1 processes the
next four non-zero blocks E’, F’, G’, and H’. As block E’
still belongs to row 0, the entry for the first result of thread 1
is set as 0.

Bit Flag ൌ ሾ1 1 1 1 0 1 0		1		1		0		1		1		1		1		1 0ሿ

Value ൌ ሾܣᇱ ′ܤ ′ܥ ′ܦ ′ܮ		′ܭ		′ܬ		′ܫ		′ܪ		′ܩ		′ܨ		′ܧ ′ܯ ܰ′ ܱ′ ܲ′ሿ

Col_index ൌ ሾ0 2 4 6 7 3 6		1		3		5		1		2		3		5		6 7ሿ (uncompressed)

C ൌ ൦

′ܣ 0 ′ܤ 0 ′ܥ 0 ′ܦ ′ܧ
0 0 0 ′ܨ 0 0 ′ܩ 0
0 ′ܪ 0 ′ܫ 0 ′ܬ 0 0
0 ′ܭ ′ܮ ′ܯ 0 ܰ′ ܱ′ ܲ′

൪

ܣ ∗ Ԧݕ ൌ

0 0
0 0

ܽ 0
݀ ݁

0 0
݇ ݈

0 0
0 0

 ∗

ۏ
ێ
ێ
ۍ
ሾ0ሿݕ
ሾ1ሿݕ
ሾ2ሿݕ
ےሾ3ሿݕ

ۑ
ۑ
ې
 ൦

0 0
0 0

ܾ ܿ
݂ 0

݃ ݄
݉ ݊

݅ ݆

൪ ∗

ۏ
ێ
ێ
ۍ
ሾ4ሿݕ
ሾ5ሿݕ
ሾ6ሿݕ
ےሾ7ሿݕ

ۑ
ۑ
ې

Bit Flag ൌ ሾ1 1 1 1 0 1		0		1		1		0		1		1		1		1 1 0ሿ

Result	Entry:			0																0																2														 	3						

(c) The location of the first result generated by each thread. Assume there
are four threads and each thread processes four non-zero blocks.

Fig. 7. Auxiliary information for SpMV.

3. EFFICIENT MATRIX-BASED SEGMENTED SCAN/SUM FOR SPMV
For a sparse matrix stored in our BCCOO/BCCOO+ format, SpMV can be implement-
ed in three logical steps: (1) read the data value arrays and multiply them with the
corresponding vector values indexed by the Col index array; (2) perform a customized
matrix-based segmented scan/sum using the bit flag array; (3) combine the partial re-
sults, and write back the final results to global memory using the result entry array.
In our proposed scheme, all these three steps are implemented in a single kernel so as
to minimize the kernel invocation overhead.

3.1. Segmented Scans
The segmented scan primitive scans multiple data segments that are stored togeth-
er. A start flag array is typically used to identify the first element of a segment. We
show an example of the inclusive segmented scan in Figure 8. Its start flag array is
generated from the bit flag array of the BCCOO format in Figure 7. The output of
the inclusive segment scan is the Result array in Figure 8. Note that for SpMV, the
complete segmented scan results are not necessary. Actually, we only need the last
sum of each segment, which is marked with underscores in the Result array. Thus,
a more lightweight segmented sum can be used for SpMV. However, considering that
a warp is the minimum scheduling unit for GPUs, segmented sum has almost equal
computation to segmented scan when there are few non-zeros in each row. Besides, for
segmented sum, it has to check whether the corresponding bit for each non-zero value
is a row stop or not, which brings overhead. Thus, we consider both segmented scan
and segmented sum to implement SpMV.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

XXXX:8 Y. Zhang et al.

(a)

(b)
Figure 6.(a) The BCCOO format of Matrix C in Eq.2. (b) The
example of compute the location of the first result generated by
each thread, assuming that there are four threads and each
thread processes four non-zero blocks.

Second, we perform a quick check to see whether we can
skip the parallel segmented scan operation at the workgroup
level. It is the case when each thread in a workgroup
encounters a row stop, which results in the segment size
being 1 for the parallel segmented scan.

3. An Efficient Matrix-based Segmented Sum/Scan
for SpMV
With a sparse matrix stored in our BCCOO/BCCOO+
format, SpMV can be implemented in three logical steps: (1)
read the data value arrays and multiply them with the
corresponding vector values indexed by the Col_index array;
(2) perform a segmented scan using the bit flag array from
our BCCOO/BCCOO+ format; (3) write back the results to
global memory. In our proposed scheme, all these three
steps are implemented in a single kernel so as to minimize
the kernel invocation overhead.

3.1 Segmented Scans
The segmented scan primitive scans multiple data segments
that are stored together. A start flag array is typically used to
identify the first element of a segment. We show an example
of the inclusive segmented scan in Figure 7. Its start flag
array is generated from the bit-flag array of the BCCOO
format in Figure 6.The output of the inclusive segment scan
is the ‘Result’ array in Figure 7. Note that for SpMV, the
complete segmented scan results are not necessary. Instead,
the last sum of each segment is sufficient, as marked with
underscores in the ‘Result’ array. In other words, for SpMV,
the segmented reduction/sum primitive can be used rather
than the segmented scan primitive.

Figure 7. An inclusive segmented scan with the start flags

generated from the bit flag array in Figure 6(a).

Figure 8. Even workload distribution: each workgroup/thread
block works on a workgroup-level tile; each thread works on a
thread-level tile of non-zero blocks.

Twomain approacheshave been proposed to parallelize the
segmented scan primitive on GPUs. One is a tree-based
approach[5], which builds a binary tree through different
processing stages. The tree-based approach suffers from the
load imbalance problem as different numbers of threads will
be idle in different processing stages. Furthermore, it
requires workgroup-level synchronization between stages as
discussed in [8]. The other is a matrix-based approach,
which is proposed to improve memory efficiency and
overcome the load imbalance problem. Our proposed
BCCOO/BCCOO+ format suits better with the matrix-based
segmented scan and we further customize it for SpMV.

3.2 A Customized Matrix-based Segmented Sum/Scan
for SpMV
3.2.1 Per-thread and per-workgroup working sets
In our segmented sum/scan approach for SpMV, the input
non-zero blocks as well as the corresponding bit-flag array
and the column index array are divided evenly
amongworkgroups. The working set of each workgroup is
referred to as a workgroup-level tile, which in turn will be
divided evenly among the threads within the workgroup.
The working set of a thread is referred to as a thread-level
tile, as shown in Figure 8. The benefits of using a single
thread to process multiple consecutive non-zero blocks (e.g.,
16) are two-folds. First, a single/few load(s) from the bit
flag array (e.g., loading a single short type of data) will be
sufficient to provide all the bit flag information. Compared
to the previous approaches, which load the row index
information for every non-zero, significantbandwidth will
be saved. Second, each thread will perform the segmented
scan in a sequential manner and may use a segmented sum
instead of a segmented scan, which has fewer intermediate
results to keep. Also, note that the bit flags in our
BCCOO/BCCOO+ format are different from the start flags
that are used in typical segmented scans as shown in Figure
7. Although the start flags can be derived from the bit flags,
we choose to use the bit flags since it is straightforward to
tell whether a segment ends from the bit flags. If the start
flags were used, one needs to search for the next start to find
the end of the current segment. It would be more complex
when the non-zeros in a row span across multiple thread-
level or workgroup-level tiles.
3.2.2 Computing per-thread and per-workgroup partial
sums

Non‐zeros	
...

Workgroup‐level	tile	 Workgroup‐level	tile	

...	
Thread‐level	tile

Input ൌ ሾ3		2		0		2		1		0		4		2 4		3		2		2		0		1		3		1ሿ

Bit	Flag ൌ ሾ1		1		1		1		0		1		0		1 1		0		1		1		1		1		1		0ሿ

Start	Flag ൌ ሾ1		0		0		0		0		1		0		1 0		0		1		0		0		0		0		0ሿ

Result ൌ ሾ3 5 5 7 8 0 4 2 6 9 2 4 4 5 8 9]

Thread‐level	tile	

Fig. 8. An inclusive segmented scan with the start flags generated from the bit flag array in Figure 7(b).

Two main approaches have been proposed to parallelize the segmented scan primi-
tive on GPUs. One is a tree-based approach [Blelloch 1989], which builds a binary tree
through different processing stages. The tree-based approach suffers from the load im-
balance problem. Furthermore, it requires workgroup-level synchronization between
stages as discussed in [Dotsenko et al. 2008]. The other is a matrix-based approach
[Dotsenko et al. 2008], which is proposed to improve memory efficiency and overcome
the load imbalance problem. Our proposed BCCOO/BCCOO+ format suits better with
the matrix-based segmented scan and we further customize it for SpMV.

3.2. Customized Matrix-based Segmented Scan/Sum for SpMV
3.2.1. Per-thread and per-workgroup working sets. In our segmented sum/scan approach

for SpMV, the non-zero blocks, the bit flag array, and the column index array are di-
vided evenly among workgroups. The working set of each workgroup is referred to as
a workgroup-level tile, which in turn will be divided evenly among the threads with-
in the workgroup. The working set of a thread is referred to as a thread-level tile, as
shown in Figure 9. For a thread-level tile, a single/few load(s) from the bit flag array
(such as loading a single short type of data) will be sufficient to provide all the bit
flag information. Compared with the previous approaches, which load the row index
information for every non-zero, significant bandwidth will be saved.

(a)

(b)
Figure 6.(a) The BCCOO format of Matrix C in Eq.2. (b) The
example of compute the location of the first result generated by
each thread, assuming that there are four threads and each
thread processes four non-zero blocks.

Second, we perform a quick check to see whether we can
skip the parallel segmented scan operation at the workgroup
level. It is the case when each thread in a workgroup
encounters a row stop, which results in the segment size
being 1 for the parallel segmented scan.

3. An Efficient Matrix-based Segmented Sum/Scan
for SpMV
With a sparse matrix stored in our BCCOO/BCCOO+
format, SpMV can be implemented in three logical steps: (1)
read the data value arrays and multiply them with the
corresponding vector values indexed by the Col_index array;
(2) perform a segmented scan using the bit flag array from
our BCCOO/BCCOO+ format; (3) write back the results to
global memory. In our proposed scheme, all these three
steps are implemented in a single kernel so as to minimize
the kernel invocation overhead.

3.1 Segmented Scans
The segmented scan primitive scans multiple data segments
that are stored together. A start flag array is typically used to
identify the first element of a segment. We show an example
of the inclusive segmented scan in Figure 7. Its start flag
array is generated from the bit-flag array of the BCCOO
format in Figure 6.The output of the inclusive segment scan
is the ‘Result’ array in Figure 7. Note that for SpMV, the
complete segmented scan results are not necessary. Instead,
the last sum of each segment is sufficient, as marked with
underscores in the ‘Result’ array. In other words, for SpMV,
the segmented reduction/sum primitive can be used rather
than the segmented scan primitive.

Figure 7. An inclusive segmented scan with the start flags

generated from the bit flag array in Figure 6(a).

Figure 8. Even workload distribution: each workgroup/thread
block works on a workgroup-level tile; each thread works on a
thread-level tile of non-zero blocks.

Twomain approacheshave been proposed to parallelize the
segmented scan primitive on GPUs. One is a tree-based
approach[5], which builds a binary tree through different
processing stages. The tree-based approach suffers from the
load imbalance problem as different numbers of threads will
be idle in different processing stages. Furthermore, it
requires workgroup-level synchronization between stages as
discussed in [8]. The other is a matrix-based approach,
which is proposed to improve memory efficiency and
overcome the load imbalance problem. Our proposed
BCCOO/BCCOO+ format suits better with the matrix-based
segmented scan and we further customize it for SpMV.

3.2 A Customized Matrix-based Segmented Sum/Scan
for SpMV
3.2.1 Per-thread and per-workgroup working sets
In our segmented sum/scan approach for SpMV, the input
non-zero blocks as well as the corresponding bit-flag array
and the column index array are divided evenly
amongworkgroups. The working set of each workgroup is
referred to as a workgroup-level tile, which in turn will be
divided evenly among the threads within the workgroup.
The working set of a thread is referred to as a thread-level
tile, as shown in Figure 8. The benefits of using a single
thread to process multiple consecutive non-zero blocks (e.g.,
16) are two-folds. First, a single/few load(s) from the bit
flag array (e.g., loading a single short type of data) will be
sufficient to provide all the bit flag information. Compared
to the previous approaches, which load the row index
information for every non-zero, significantbandwidth will
be saved. Second, each thread will perform the segmented
scan in a sequential manner and may use a segmented sum
instead of a segmented scan, which has fewer intermediate
results to keep. Also, note that the bit flags in our
BCCOO/BCCOO+ format are different from the start flags
that are used in typical segmented scans as shown in Figure
7. Although the start flags can be derived from the bit flags,
we choose to use the bit flags since it is straightforward to
tell whether a segment ends from the bit flags. If the start
flags were used, one needs to search for the next start to find
the end of the current segment. It would be more complex
when the non-zeros in a row span across multiple thread-
level or workgroup-level tiles.
3.2.2 Computing per-thread and per-workgroup partial
sums

Non‐zeros	
...

Workgroup‐level	tile	 Workgroup‐level	tile	

...	
Thread‐level	tile

Input ൌ ሾ3		2		0		2		1		0		4		2 4		3		2		2		0		1		3		1ሿ

Bit	Flag ൌ ሾ1		1		1		1		0		1		0		1 1		0		1		1		1		1		1		0ሿ

Start	Flag ൌ ሾ1		0		0		0		0		1		0		1 0		0		1		0		0		0		0		0ሿ

Result ൌ ሾ3 5 5 7 8 0 4 2 6 9 2 4 4 5 8 9]

Thread‐level	tile	

Fig. 9. Even workload distribution: each workgroup/thread block works on a workgroup-level tile; each
thread works on a thread-level tile of non-zero blocks.

Since a thread-level tile may contain row stops, each thread will write its last partial
sum into a temporary array, called last partial sums. Then, a parallel segmented scan
[Sengupta et al. 2007] will be performed on this last partial sums array. The start
flags of the last partial sums array are generated by each thread. We further perform
a quick check to see whether we can skip the parallel segmented scan operation at
the workgroup level. It is the case when each thread in a workgroup encounters a
row stop, which results in the segment size being 1 for the parallel segmented scan.
When the non-zeros in a row span multiple workgroups/thread blocks, we leverage
the recently proposed adjacent synchronization [Yan et al. 2013] for inter-workgroup
communication, which eliminates global synchronization.

3.2.2. Computing the partial sums and the final results. We design three strategies to com-
pute the intra-workgroup partial sums and get the final results. The first and the
second strategies are designed for GPUs, and the third one is proposed especially for
Inte MIC.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

A Cross-Platform SpMV Framework on Many-Core Architectures XXXX:9

Strategy (1): In the first strategy, each thread has an array, called
intermediate sums, to keep all the intermediate sums of its thread-level tile. This
intermediate sums array can be stored in shared memory (also called local memory
in OpenCL), registers, or split between shared memory and registers. This strategy
works well if most rows in a sparse matrix have very few non-zeros. For the matrix C
in Figure 7(a), the computation of the intra-workgroup partial sums is illustrated in
Figure 10, in which we assume that each thread-level tile contains 4 non-zero blocks
and there are 4 threads in a workgroup. Each thread performs a sequential segmented
scan, and stores the results in its intermediate sums array. Each thread uses the last
partial sum to update the corresponding entry of the last partial sums array, which
locates in the shared memory and can be accessed by all the threads in a workgroup. If
the last element of a thread-level tile is a row stop, the last partial sum of this thread
is 0, as shown by thread 3 in Figure 10.

[(y[0] y[7]) (y[2] y[3]) (y[4] y[6]) (y[6] y[1])]

[(A'T E'T)(B'T F'T)(C'T G'T)(D'T H'T)]

[(R0 R4) (R1 R5) (R2 R6) (R3 R7)]

[(1 0) (1 1) (1 0) (1 1)]

thread 0

R
0

R
0

+ R
1

R
0

+ R
1

+
 R

2

R
0

+
 R

1
+ R

2
+

 R
3

R
4

R
5

R
5

+ R
6

R
7

[(I'T M'T)(J'T N'T)(K'T O'T)(L'T P'T)]

[(R8 R12) (R9 R13) (R10 R14) (R11 R15)]

[(1 1) (0 1) (1 1) (1 0)]

thread 1

R
8

R
8

+ R
9

R
1

0

R
1

0
+ R

1
1

R
1

2

R
1

2
+ R

1
3

R
1

2
+ R

1
3

+ R
1

4

R
1

2
+ R

1
3

+ R
1

4
+ R

1
5

0

R10 + R11

R7

R0 + R1 + R2 + R3

R12 + R13 + R14 + R15

R8 + R9

R5 + R6

R4last_partial_sums array

write back to
global memory...

serial
sum

serial
sum

serial
sum

serial
sum

R
0

R
0

+ R
1

R
0

+ R
1

+ R
2

R
0

+
 R

1
+ R

2
+

 R
3

R
4

R
5

R
5

+ R
6

R
7

R
8

R
8

+ R
9

R
1

0

R
1

0
+ R

1
1

R
1

2

R
1

2
+ R

1
3

R
1

2
+ R

1
3

+ R
1

4

R
1

2
+ R

1
3

+ R
1

4
+ R

1
5

0

R10 + R11

R7

R0 + R1 + R2 + R3

R12 + R13 + R14 + R15

R8 + R9

R5 + R6

R4last_partial_sums array

result_cache...

[y[0] y[2] y[4] y[6]]

[A' B' C' D']

[R0 R1 R2 R3]
[1 1 1 1]

thread 0

[y[7] y[3] y[6] y[1]]

[E' F' G' H']

[R4 R5 R6 R7]
[0 1 0 1]

thread 1

[y[3] y[5] y[1] y[2]]

[I' J' K' L']

[R8 R9 R10 R11]
[1 0 1 1]

thread 2

[y[3] y[5] y[6] y[7]]

[M' N' O' P']

[R12 R13 R14 R15]
[1 1 1 0]

thread 3

serial
scan

serial
scan

serial
scan

serial
scan

R
0

R
0

+ R
1

R
0

+
 R

1
+ R

2

R
0

+ R
1

+ R
2

+ R
3

R
4

R
5

R
5

+ R
6

R
7

R
8

R
8

+ R
9

R
1

0

R
1

0
+ R

1
1

R
1

2

R
1

2
+ R

1
3

R
1

2
+

 R
1

3
+ R

1
4

R
1

2
+

 R
1

3
+ R

1
4

+ R
1

5

0

R10 + R11

R7

R0 + R1 + R2 + R3

last_partial_sums array

intermediate_sums intermediate_sums

[(y[3] y[3]) (y[5] y[5]) (y[1] y[6]) (y[2] y[7])]

[y[0] y[2] y[4] y[6]]

[A' B' C' D']

[R0 R1 R2 R3]
[1 1 1 1]

thread 0

[y[7] y[3] y[6] y[1]]

[E' F' G' H']

[R4 R5 R6 R7]
[0 1 0 1]

thread 1

[y[3] y[5] y[1] y[2]]

[I' J' K' L']

[R8 R9 R10 R11]
[1 0 1 1]

thread 2

[y[3] y[5] y[6] y[7]]

[M' N' O' P']

[R12 R13 R14 R15]
[1 1 1 0]

thread 3

Fig. 10. Computing segmented scans: strategy (1), which uses per-thread buffers, namely, the
intermediate sums arrays to store the intermediate sum results.

Memory coalescing [Ueng et al. 2008] is the key factor to achieve high bandwidth
when accessing the data value array. We view the data value array as a 2-dimension
array with the width as the thread-level tile size. Then, with a transpose operation,
the threads in a warp will access the data in a row-by-row manner, thereby satisfying
the memory coalescing requirement. We do the same thing to the Col index array. The
transpose operation can be done either online or offline. With online approach, the
threads in a warp read one tile at a time in a coalesced manner and multiply with
the corresponding vector elements, then store the results in a shared memory buffer
still in the row-based manner. Later on, when performing the segmented scan, the
threads read the buffer in a column-based manner. If non-zeros in a row are close
to each other, online transpose may achieve better performance due to the improved

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

XXXX:10 Y. Zhang et al.

locality for the multiplied vector. We use online transpose for our first strategy. For
offline transpose, the 2-dimension data value array is previously transposed during
the format generation phase. Different from online transpose, offline transpose does
not require a shared memory buffer for transposition. We will use offline transpose in
strategy (2).

ALGORITHM 1: Combining the partial sums for strategy (1)
Input: res addr: the first result location of the thread. i: the local thread id.

pre partial sum: the last partial sum of the previous workgroups.
bit flag: the bit flag for the thread working set. work size: the thread working set size.

Output: results[]: the final results after combining the partial sums.
1 float tmp = 0.0;
2 for int n = 0; n < work size; n++ do
3 if Is the n-th bit of bit flag a row stop? then
4 if Is the first row stop in the current thread? then
5 if Is the first row stop in the current workgroup? then
6 tmp = intermediat sums[n] + last partial sums[i− 1] + pre partial sum;
7 else
8 tmp = intermediat sums[n] + last partial sums[i− 1];
9

10 else
11 tmp = intermediat sums[n];
12 results[res addr++] = tmp;
13

Next, we need to combine the results in the per-thread intermediate sums arrays,
the results in the per-workgroup last partial sums array, and also the results from
other workgroups to generate the final output of SpMV. ALGORITHM 1 illustrates
how to generate the final output for strategy (1). Each thread will go through its
intermediate sums array. For each element, it checks whether the corresponding bit
flag is a row stop (line 3). If not, it means the corresponding result has already been
incorporated into the sum of the segment. For a row stop, a thread further check-
s whether it is the first stop in its thread-level tile (line 4). If not, it means the
thread-level tile contains the complete segment and the corresponding result is the
final result (line 11). In the example shown in Figure 10, for thread 1, the entry in
its intermediate sums array containing (R5+R6) is such a case. If a row stop is the
first in a thread-level tile (such as the entry containing R4 for thread 1 in Figure 10),
there are two possibilities. One is that the segment spans multiple threads within a
workgroup (line 7-8). Then, the last partial sums array of the workgroup will be used
to retrieve the last partial sum of the previous threads. For example, the entry con-
taining (R0+R1+R2+R3) in the last partial sums array will be added to R4 of thread 1
in Figure 10. The other possibility is that the segment spans multiple threads across
workgroups (line 5-6). In this case, we also need to accumulate the last partial sum re-
sults of the previous workgroups. We resort to adjacent synchronization to avoid global
synchronization as discussed in Section 3.2.3. At last, the final results is written back
to global memory (line 12).

Strategy (2): In our second strategy, we allocate a result cache in shared memory
to only store the sum of each segment. This strategy works better for long segments
and also benefits from efficient memory writes, as we can store the result cache to
global memory in a coalesced way. With this strategy, the offline transpose is used to
ensure coalesced memory reads from the data value array and the Col index array.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

A Cross-Platform SpMV Framework on Many-Core Architectures XXXX:11

After performing the multiplication with vector elements, each thread carries out a
segmented sum sequentially on its thread-level tile, using the bit flag array as the
mask for the segments. All the segmented sums will be written to the result cache with
the help of the result entry information generated along with the BCCOO format.

[(y[0] y[7]) (y[2] y[3]) (y[4] y[6]) (y[6] y[1])]

[(A'T E'T)(B'T F'T)(C'T G'T)(D'T H'T)]

[(R0 R4) (R1 R5) (R2 R6) (R3 R7)]

[(1 0) (1 1) (1 0) (1 1)]

thread 0

R
0

R
0

+ R
1

R
0

+ R
1

+
 R

2

R
0

+
 R

1
+ R

2
+

 R
3

R
4

R
5

R
5

+ R
6

R
7

[(I'T M'T)(J'T N'T)(K'T O'T)(L'T P'T)]

[(R8 R12) (R9 R13) (R10 R14) (R11 R15)]

[(1 1) (0 1) (1 1) (1 0)]

thread 1

R
8

R
8

+ R
9

R
1

0

R
1

0
+ R

1
1

R
1

2

R
1

2
+ R

1
3

R
1

2
+ R

1
3

+ R
1

4

R
1

2
+ R

1
3

+ R
1

4
+ R

1
5

0

R10 + R11

R7

R0 + R1 + R2 + R3

R12 + R13 + R14 + R15

R8 + R9

R5 + R6

R4last_partial_sums array

write back to
global memory...

serial
sum

serial
sum

serial
sum

serial
sum

R
0

R
0

+ R
1

R
0

+ R
1

+ R
2

R
0

+
 R

1
+ R

2
+

 R
3

R
4

R
5

R
5

+ R
6

R
7

R
8

R
8

+ R
9

R
1

0

R
1

0
+ R

1
1

R
1

2

R
1

2
+ R

1
3

R
1

2
+ R

1
3

+ R
1

4

R
1

2
+ R

1
3

+ R
1

4
+ R

1
5

0

R10 + R11

R7

R0 + R1 + R2 + R3

R12 + R13 + R14 + R15

R8 + R9

R5 + R6

R4last_partial_sums array

result_cache...

[y[0] y[2] y[4] y[6]]

[A' B' C' D']

[R0 R1 R2 R3]
[1 1 1 1]

thread 0

[y[7] y[3] y[6] y[1]]

[E' F' G' H']

[R4 R5 R6 R7]
[0 1 0 1]

thread 1

[y[3] y[5] y[1] y[2]]

[I' J' K' L']

[R8 R9 R10 R11]
[1 0 1 1]

thread 2

[y[3] y[5] y[6] y[7]]

[M' N' O' P']

[R12 R13 R14 R15]
[1 1 1 0]

thread 3

serial
scan

serial
scan

serial
scan

serial
scan

R
0

R
0

+ R
1

R
0

+
 R

1
+ R

2

R
0

+ R
1

+ R
2

+ R
3

R
4

R
5

R
5

+ R
6

R
7

R
8

R
8

+ R
9

R
1

0

R
1

0
+ R

1
1

R
1

2

R
1

2
+ R

1
3

R
1

2
+

 R
1

3
+ R

1
4

R
1

2
+

 R
1

3
+ R

1
4

+ R
1

5

0

R10 + R11

R7

R0 + R1 + R2 + R3

last_partial_sums array

intermediate_sums intermediate_sums

[(y[3] y[3]) (y[5] y[5]) (y[1] y[6]) (y[2] y[7])]

[y[0] y[2] y[4] y[6]]

[A' B' C' D']

[R0 R1 R2 R3]
[1 1 1 1]

thread 0

[y[7] y[3] y[6] y[1]]

[E' F' G' H']

[R4 R5 R6 R7]
[0 1 0 1]

thread 1

[y[3] y[5] y[1] y[2]]

[I' J' K' L']

[R8 R9 R10 R11]
[1 0 1 1]

thread 2

[y[3] y[5] y[6] y[7]]

[M' N' O' P']

[R12 R13 R14 R15]
[1 1 1 0]

thread 3

Fig. 11. Computing segmented sum: strategy (2), which uses a per-workgroup result cache to store seg-
mented sums. The dashed blocks mean that the intermediate sums are not stored.

Using the matrix C in Figure 7(a) as an example, strategy (2) is illustrated in Fig-
ure 11. We assume that each thread-level tile contains 4 non-zero blocks and there
are 4 threads in a workgroup. The result entry information shown in Figure 7 is used
for updating the result cache. For example, as shown in Figure 7, the result entry for
thread 1 and thread 2 is 0 and 2, respectively. Therefore, when thread 1 encounters
the first row stop, it uses its current sum R4 to update the entry 0 of the result cache.
When thread 1 encounters the second row stop, it uses the sum R5+R6 to update the
entry 1 of the result cache. In a sense, the result entry information partitions the re-
sult cache among different threads in a workgroup. When the number of row stops in
a workgroup-level tile is larger than the result cache size, the extra segmented sums
will be stored in the result array in global memory, which will be re-accessed later to
generate the final outputs.

The same as the first strategy, each thread also writes its last partial sum to the
last partial sums array. To generate the start flags for the last partial sums array, in ei-
ther strategy, each thread simply checks whether its bit flags contain a 0 (namely a row

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

XXXX:12 Y. Zhang et al.

stop). If so, its last partial sum should be a start for a segment in the last partial sums
array. For the examples in Figure 10 and Figure 11, the start flags are [0, 1, 1, 1], since
all threads except thread 0 process a tile containing a row stop. After updating the
last partial sums array, all the threads in the workgroup perform a parallel segment-
ed scan [Sengupta et al. 2007] on the last partial sums array using the start flags. In
our example in Figure 10 or Figure 11, this parallel scan can be skipped since all the
segment sizes are 1.

ALGORITHM 2: Combining the partial sums for strategy (2)
Input: res addr: the first result location of the thread.

pre partial sum: the last partial sum of the previous workgroups.
b res addr: the first result location of the current workgroup.
cache len: the length of the result cache[]. cache end: the number of the cached results.
workgroup size: the number of threads in a workgroup.

Output: results[]: the final results after combining the partial sums.
1 int i = local thread id;
2 if i == 0 then
3 result cache[0] += pre partial sum;
4

5 workgroup-level-barrier();
6 if i != 0 then
7 if Is there a row stop in the current thread? then
8 if res addr − b res addr < cache len then
9 result cache[res addr − b res addr] += last partial sums[i− 1];

10 else
11 results[res addr]+=last partial sums[i− 1];
12

13

14 while i < cache end do
15 results[i+ b res addr] = result cache[i] ; // Write back in a coalesced way.
16 i+=workgroup size;

ALGORITHM 2 illustrates how to generate the final output for strategy (2). In s-
trategy (2), there are no per-thread intermediate sum arrays. Instead, there is a per-
workgroup result cache. For thread 0, it updates the entry 0 of the result cache with
the last partial sum from the previous workgroup (line 2-4). To avoid data race at the
entry 0 of the result cache, a workgroup-level synchronization is used (line 5). Each
thread except thread 0 first checks whether there are row stops in its thread-level tile
(line 7). If so, it means that the thread has generated some partial sums corresponding
to the row stops. Each thread only needs to process the partial sum at the first row stop
(such as R4 in the result cache in Figure 11). For subsequent row stops in the thread,
the partial sums in the result cache are already the complete segment sums. Next,
each thread except thread 0 adds the last partial sum from the previous thread to the
partial sum at the first row stop, which is stored either in result cache (line 8-9) or
in global memory (line 10-11). For example, R0+R1+R2+R3 from the last partial sums
array is added to R4 in the result cache in Figure 11). After the result cache is updated,
it is written back to global memory in a memory-coalescing way (line 14-16).

Strategy (3): Intel MIC and GPUs have different hardware architectures and dif-
ferent performance optimization tricks. Thus, we propose the third strategy specifical-
ly for MIC, as illustrated in Figure 12. To achieve high throughput on MIC based on
OpenCL, two key points should be noticed. Firstly, the local memory in OpenCL, which

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

A Cross-Platform SpMV Framework on Many-Core Architectures XXXX:13

is usually used as a high performance shared buffer, has no corresponding hardware
implementation in MIC. The data in local memory is actually put in the global memo-
ry of MIC, with extra software overhead. As illustrated in Figure 12, the intermediate
sums are not stored, and therefore the local memory consumption is avoided. All the
segmented sums will be written back to the global memory directly with the help of
the result entry information. Besides, the last partial sums array is also stored in the
global memory.

[(y[0] y[7]) (y[2] y[3]) (y[4] y[6]) (y[6] y[1])]

[(A'T E'T)(B'T F'T)(C'T G'T)(D'T H'T)]

[(R0 R4) (R1 R5) (R2 R6) (R3 R7)]

[(1 0) (1 1) (1 0) (1 1)]

thread 0

R
0

R
0

+ R
1

R
0

+ R
1

+
 R

2

R
0

+
 R

1
+ R

2
+

 R
3

R
4

R
5

R
5

+ R
6

R
7

[(I'T M'T)(J'T N'T)(K'T O'T)(L'T P'T)]

[(R8 R12) (R9 R13) (R10 R14) (R11 R15)]

[(1 1) (0 1) (1 1) (1 0)]

thread 1

R
8

R
8

+ R
9

R
1

0

R
1

0
+ R

1
1

R
1

2

R
1

2
+ R

1
3

R
1

2
+ R

1
3

+ R
1

4

R
1

2
+ R

1
3

+ R
1

4
+ R

1
5

0

R10 + R11

R7

R0 + R1 + R2 + R3

R12 + R13 + R14 + R15

R8 + R9

R5 + R6

R4last_partial_sums array

write back to
global memory...

serial
sum

serial
sum

serial
sum

serial
sum

R
0

R
0

+ R
1

R
0

+ R
1

+ R
2

R
0

+
 R

1
+ R

2
+

 R
3

R
4

R
5

R
5

+ R
6

R
7

R
8

R
8

+ R
9

R
1

0

R
1

0
+ R

1
1

R
1

2

R
1

2
+ R

1
3

R
1

2
+ R

1
3

+ R
1

4

R
1

2
+ R

1
3

+ R
1

4
+ R

1
5

0

R10 + R11

R7

R0 + R1 + R2 + R3

R12 + R13 + R14 + R15

R8 + R9

R5 + R6

R4last_partial_sums array

result_cache...

[y[0] y[2] y[4] y[6]]

[A' B' C' D']

[R0 R1 R2 R3]
[1 1 1 1]

thread 0

[y[7] y[3] y[6] y[1]]

[E' F' G' H']

[R4 R5 R6 R7]
[0 1 0 1]

thread 1

[y[3] y[5] y[1] y[2]]

[I' J' K' L']

[R8 R9 R10 R11]
[1 0 1 1]

thread 2

[y[3] y[5] y[6] y[7]]

[M' N' O' P']

[R12 R13 R14 R15]
[1 1 1 0]

thread 3

serial
scan

serial
scan

serial
scan

serial
scan

R
0

R
0

+ R
1

R
0

+
 R

1
+ R

2

R
0

+ R
1

+ R
2

+ R
3

R
4

R
5

R
5

+ R
6

R
7

R
8

R
8

+ R
9

R
1

0

R
1

0
+ R

1
1

R
1

2

R
1

2
+ R

1
3

R
1

2
+

 R
1

3
+ R

1
4

R
1

2
+

 R
1

3
+ R

1
4

+ R
1

5

0

R10 + R11

R7

R0 + R1 + R2 + R3

last_partial_sums array

intermediate_sums intermediate_sums

[(y[3] y[3]) (y[5] y[5]) (y[1] y[6]) (y[2] y[7])]

[y[0] y[2] y[4] y[6]]

[A' B' C' D']

[R0 R1 R2 R3]
[1 1 1 1]

thread 0

[y[7] y[3] y[6] y[1]]

[E' F' G' H']

[R4 R5 R6 R7]
[0 1 0 1]

thread 1

[y[3] y[5] y[1] y[2]]

[I' J' K' L']

[R8 R9 R10 R11]
[1 0 1 1]

thread 2

[y[3] y[5] y[6] y[7]]

[M' N' O' P']

[R12 R13 R14 R15]
[1 1 1 0]

thread 3

Fig. 12. Computing segmented sum: strategy (3), proposed only for Intel MIC. The dashed blocks mean that
the intermediate sums are not stored.

Secondly, the 512-bit SIMD instruction in MIC should be fully utilized. To achieve
this, besides the offline transpose for the data value array used in strategy (2), we con-
duct another inner-block transpose for the BCCOO format. In Figure 12,A′T means the
transposed block of A′. After the inner-block transpose, each thread can execute both
the multiplication and addition operations in SpMV in a SIMD manner. The width
of the SIMD instruction is decided by the width of each block (after transposition).
When the width of each block is small, the potential performance of the 512-bit SIMD
instruction cannot be fully exploited. However, enlarging the width of each block will
bring more zero elements, which reduces the sparse matrix compression efficiency. To
solve this dilemma, we propose a method of workload coalescing. As shown in Fig-
ure 12, the workload of two threads in Figure 11 is coalesced to be done by one thread.
Take thread 0 in Figure 12 as an example, thread 0 processes two non-zero blocks (i.e.,
A′T and E′T) simultaneously, and thus the width of SIMD is doubled. The number of

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

XXXX:14 Y. Zhang et al.

threads, whose workload is coalesced to be done by one thread, is called bunch size in
the following content.

ALGORITHM 3: Combining the partial sums for strategy (3)
Input: bunch size: the bunch size. i: the local thread id.

res addr[]: the first result locations for all bunch size slices of the coalesced workload.
pre partial sum: the last partial sum of the previous workgroups.

Output: results[]: the final results after combining the partial sums.
1 int i = local thread id;
2 if i == 0 then
3 results[res addr[0]] += pre partial sum;
4

5 workgroup-level-barrier();
6 if i != 0 then
7 if Is there a row stop in the 0-th slice of the coalesced workload? then
8 results[res addr[0]] += last partial sums[i− 1][bunch size− 1];
9

10 for int n = 1; n < bunch size; n++ do
11 if Is there a row stop in the n-th slice of the coalesced workload? then
12 results[res addr[n]] += last partial sums[i][n− 1];
13

ALGORITHM 3 illustrates how to generate the final output for strategy (3). In strat-
egy (3), the intermediate results are written back to the global memory directly with-
out being cached. Recall that there are total bunch size slices of workload coalesced to
be done by one thread. For thread 0, it updates the entry 0 of the result cache with the
last partial sum from the previous workgroup (line 2-4). Each thread except thread 0
first checks whether there are row stops in its 0-th slice of the coalesced workload. If so,
the thread accumulates the last patrial sum (the partial sum of the (bunch size-1)-th
slice workload of the last thread) to the corresponding result entry in global memory
(line 7-8). For example, R0+R1+R2+R3 from the last partial sums array is added to
R4 in the global memory in Figure 12. Then, the current thread checks whether there
are row stops in the n-th slice workload of its own, where n∈[1, bunch size−1]. If so,
the current thread accumulates the partial sum of the (n-1)-th slice to the first result
location of the n-th slice (line 11-12).

3.2.3. Accumulating partial sums across workgroups. As discussed in Section 3.2.2, for seg-
ments spanning multiple workgroups, the partial sums should be accumulated across
the workgroups. The last workgroup, which contains the row stop, needs to accumulate
the partial sums of previous workgroups. Here, we make an implicit assumption that
the workgroup-level tiles are distributed to workgroups in order. In other words, work-
group 0 processes the first tile; workgroup 1 processes the second tile; etc. The current
GPUs dispatch workgroups in order. Therefore, we can directly use the workgroup ids
in the kernel. If a GPU dispatches workgroups out of order, workgroups can get such
logic workgroup ids from global memory using atomic fetch-and-add operations. This
approach incurs small performance overhead, less than 2% in our experiments. We use
a global memory array Grp sum to accumulate partial sums across workgroups. We
use another initialized Sync flag array, whose elements have one-to-one correspon-
dence to Grp sum elements, for synchronization. Workgroup 0 updates the first entry
Grp sum[0] with its last partial sum, and then updates the corresponding element in
the Sync flag array. For a subsequent workgroup with id X, if it does not contain a
row stop, it waits for the entry Sync flag[X-1] to be updated by workgroup (X-1), and

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

A Cross-Platform SpMV Framework on Many-Core Architectures XXXX:15

then updates Grp sum[X] with the sum of its last partial sum and Grp sum[X-1]. If a
workgroup contains a row stop, it breaks these chained updates and directly updates
Grp sum[X] with its last partial sum. This approach is called adjacent synchronization
[Yan et al. 2013].

However, to use the approach of adjacent synchronization on some platforms (such
as AMD GPUs) with cache enabled by default, atomic primitives have to be used to
guarantee that each workgroup can access the latest values of Sync flag[X-1] and
Grp sum[X-1] once being updated by the previous workgroup. For single precision, we
use the atomic primitive atomic xchg. However, there is no corresponding atomic prim-
itives which directly support double precision. By enabling cl khr int64 base atomics,
we can use the 64-bit atomic primitive atom xchg which only supports the types of long
and ulong. Using the function as ulong(), we treat the values and variables of double
type as ulong type, which can then be used in atom xchg. So far, we can use the atomic
primitive on double-precision variables and values for adjacent synchronization with-
out losing precision.

4. AUTO-TUNING FRAMEWORK
As discussed in Sections 2 and 3, we propose BCCOO and BCCOO+ formats for sparse
matrices, and three new strategies to compute segmented sums/scans for SpMV. To
find the optimal solution for a sparse matrix, we build an offline auto-tuning frame-
work to select the format, the computing strategy, and their associated parameters.
Then, the OpenCL code is generated according to the selected parameters from this
auto-tuning framework. We also use this framework to exploit the texture cache for
the multiplied vector in single precision on GPUs. Another optimization is that we use
the ’unsigned short’ data type for the col index array if the width of a sparse matrix
is less than 65535. In this case, there is no need to further compress the col index ar-
ray using the approach discussed in Section 2.2. The parameters that this framework
explores for GPUs and MIC are listed in Table I and Table II respectively. Note that
when strategy (1) is used to compute the segmented scan, the thread-level tile size is
the size of the immediate sums array, which is the sum of the parameters, Reg size
and ShM size. Besides, the strategy (3), which is proposed specifically for Intel MIC,
includes bunch size as a tuning parameter.

As shown in Table I and Table II, there are many parameters to tune, which form a
relatively large search space. Although the framework mainly aims at iterative SpMV,
we try to minimize the overhead of offline auto-tuning using the following optimiza-
tions. First, we use GPUs to accelerate the translation from the COO format to the
BCCOO/BCCOO+ format. Second, we cache compiled kernels in a hash table so that
they can reused for different matrices. Third, we prune the search space using the
follow heuristics: (1) Since the memory footprint is highly dependent on block dimen-
sions, we only select the block dimensions with the top 4 minimum memory footprints;
(2) We always use the texture memory for the multiplied vector in single precision, and
always use offline transpose; (3) We reduce the searching range of the result cache size
for the second strategy; (4) We set the shared memory size as 0 for the per-thread inter-
mediate sums array for the first strategy; (5) We use the BCCOO+ format only when
the width of the sparse matrix is larger than the height; (6) We reduce the searching
range of the thread-level tile size according to the dimensions of the sparse matrix.
With these optimizations, our auto-tuning framework only runs 28 iterations of SpMV
on average for the 20 sparse matrices in our study (shown in Table III). The average
auto-tuning time is 3.6 seconds on average for the 20 sparse matrices on a machine
with an Intel(R) Xeon(R) E5-2660 @ 2.20GHz (only one core is used) and an NVIDIA
GTX680 GPU. Compared with the optimal results obtained from an exhaustive search
of the parameters listed in Table I, our auto-tuning results are identical to the optimal

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

XXXX:16 Y. Zhang et al.

Table I. Tunable parameters of the auto-tuning framework on GPUs

in a memory coalesced way by all threads together in a
workgroup.
3.2.4 Accumulating partial sums across workgroups
As discussed in Section 3.2.3, for segments spanning
multiple workgroups, the last workgroup, which contains
the row stop, needs to accumulate previous workgroups
partial sums. Here, we make an implicit assumption that the
workgroup-level tiles are distributed to workgroups in-order.
In other words, workgroup 0 processes the first tile;
workgroup 1 processesthe second tile; etc. Current GPUs
dispatch workgroups in-order. Therefore, we can directly
use the workgroup ids in the kernel. If a GPU dispatches
workgroups out-of-order, workgroups can get such ‘logic’
workgroup ids from global memory using atomic fetch-and-
add operations. This approach incurs small performance
overhead, less than 2% in our experiments. To accumulate
partial sums across workgroups, we use a global memory
array ‘Grp_sum’. The array is initialized to a special value
(e.g., maximal floating-point number). This array is updated
in a sequential manner. Workgroup 0 updates the first entry
‘Grp_sum[0]’ with its last partial sum. For a subsequent
workgroup with id X, if it does not contain a row stop, it
waits for the entry ‘Grp_sum[X-1]’ to be changed from the
initial value, i.e., updated by workgroup (X-1), and then
updates ‘Grp_sum[X]’ with the sum of its last partial sum
and ‘Grp_sum[X-1]’. If a workgroup contains a row stop, it
breaks such chained updates and directly updates
‘Grp_sum[X]’ with its last partial sum. This approach is
called adjacent synchronization in[24].

4. Auto-Tuning Framework
As discussed in Sections 2 and 3, we propose a new format
BCCOO and its variant BCCOO+ for sparse matrices, and
two new strategies tocomputesegmented sums/scans for
SpMV. To find the optimal solution for a sparse matrix, we
build an auto-tuning framework to select the format, the
computing strategy, as well as their associated parameters.
Then, the OpenCL code is generated according to the
selected parameters from this auto-tuning framework.We
also use this framework to exploit the texture cache for the
multiplied vector. Another optimization is that we use the
‘unsigned short’ data type for the col_index array if the
width of a sparse matrix is less than 65535. In this case,
there is no need to further compress the col_index array
using the approach discussed in Section 2.2. The parameters
that this framework explores are listed in Table 1. Note that
when strategy 1 is used to compute the segmented scan, the
thread-level tile size is the size of the immediate_sums array,
which is the sum of the parameters,Reg_size and ShM_size.

Table 1.Tunable parameters of the auto-tuning framework.

Parameter Name Possible Values
Matrix format BCCOO, BCCOO+
Col_index compress Yes, No
Block width 1, 2, 4
Block height 1, 2, 3, 4
Data type for the bit flag array Unsigned char, unsigned

short, unsigned int
Vertical slice number 1, 2, 4, 8, 16, 32
Transpose Offline, online
Texture memory for multiplied vector Yes, No
Workgroup size 64, 128, 256, 512
Strategy
1

Registers for the per-thread
intermediate sums array
(Reg_size)

0, 8, 16, 32

Shared memory for the per-
thread intermediate sums array
(ShM_size)

0, 8, 16, 32

Strategy
2

Thread-level tile size 8,16,24,32,40,64,96,128
Result cache size (multiple of
the workgroup size)

1,2,3,4

Table 2.Tunable parameters of the auto-tuning framework for

MIC.

Parameter Name Possible Values
Matrix format BCCOO
Col_index compress Yes, No
Block width 1, 2, 4
Block height 1, 2, 4
Data type for the bit flag array Unsigned char, unsigned

short, unsigned int
Workgroup size 1,2,4,8,16,32
Thread-level tile size 32~1024
Threads bunch size 1,2,4

As shown in Table 1, there are many parameters to tune,
which form a relatively large search space for a sparse
matrix on a particular hardware platform. In order to
accelerate auto-tuning, we perform the following
optimizations. First, we use GPUs to accelerate the
translation from the COO format to the BCCOO/BCCOO+
format.Second, we cache compiled kernelsin a hash table so
that they can reused for difference matrices. Third, we prune
the search space using the follow heuristics: since the
memory footprint is highly dependent on block dimensions,
we only need to select the block dimensions corresponding
to the 4smallest memory footprints. Fourth, we further
reduce the search space by: always using the texture
memory for the multiplied vector, always using offline
transpose, limiting the result cache size to 1 and 2 for
strategy 2, and setting the shared memory size as 0 for the
per-thread intermediate sums array for strategy 1. With
these optimizations, the average auto-tuning time is 12.8
seconds among the 20 matrices in our study, running on a
desktop machine with an Intel(R) Core2 Quad CPU Q9650
@ 3.00GHzand an NVIDIA GTX680 GPU. Compared to
the optimal results obtained from an exhaustive search of

Table II. Tunable parameters of the auto-tuning framework on MIC

accumulates the partial sums of multiple threads for
segments spanning multiple threads, it is added to the result
cache entry (e.g., R0+R1+R2+R3 from the last_partial_sums
array is added to R4 in the result cache in Figure 10). For
thread 0, it updates result cache entry 0 with the last partial
sum from the previous workgroup. To avoid data race at
result cache entry 0, a workgroup-level synchronization is
added after thread 0 processes the result cache entry 0. After
the result cache is processed, it is written to global memory
in a memory coalesced way by all threads together in a
workgroup.
3.2.4 Accumulating partial sums across workgroups
As discussed in Section 3.2.3, for segments spanning
multiple workgroups, the last workgroup, which contains
the row stop, needs to accumulate previous workgroups
partial sums. Here, we make an implicit assumption that the
workgroup-level tiles are distributed to workgroups in-order.
In other words, workgroup 0 processes the first tile;
workgroup 1 processesthe second tile; etc. Current GPUs
dispatch workgroups in-order. Therefore, we can directly
use the workgroup ids in the kernel. If a GPU dispatches
workgroups out-of-order, workgroups can get such ‘logic’
workgroup ids from global memory using atomic fetch-and-
add operations. This approach incurs small performance
overhead, less than 2% in our experiments. To accumulate
partial sums across workgroups, we use a global memory
array ‘Grp_sum’. The array is initialized to a special value
(e.g., maximal floating-point number). This array is updated
in a sequential manner. Workgroup 0 updates the first entry
‘Grp_sum[0]’ with its last partial sum. For a subsequent
workgroup with id X, if it does not contain a row stop, it
waits for the entry ‘Grp_sum[X-1]’ to be changed from the
initial value, i.e., updated by workgroup (X-1), and then
updates ‘Grp_sum[X]’ with the sum of its last partial sum
and ‘Grp_sum[X-1]’. If a workgroup contains a row stop, it
breaks such chained updates and directly updates
‘Grp_sum[X]’ with its last partial sum. This approach is
called adjacent synchronization in[24].

4. Auto-Tuning Framework
As discussed in Sections 2 and 3, we propose a new format
BCCOO and its variant BCCOO+ for sparse matrices, and
two new strategies tocomputesegmented sums/scans for
SpMV. To find the optimal solution for a sparse matrix, we
build an auto-tuning framework to select the format, the
computing strategy, as well as their associated parameters.
Then, the OpenCL code is generated according to the
selected parameters from this auto-tuning framework.We
also use this framework to exploit the texture cache for the
multiplied vector. Another optimization is that we use the
‘unsigned short’ data type for the col_index array if the
width of a sparse matrix is less than 65535. In this case,
there is no need to further compress the col_index array
using the approach discussed in Section 2.2. The parameters
that this framework explores are listed in Table 1. Note that
when strategy 1 is used to compute the segmented scan, the

thread-level tile size is the size of the immediate_sums array,
which is the sum of the parameters,Reg_size and ShM_size.

Table 1.Tunable parameters of the auto-tuning framework.

Parameter Name Possible Values
Matrix format BCCOO, BCCOO+
Col_index compress Yes, No
Block width 1, 2, 4
Block height 1, 2, 3, 4
Data type for the bit flag array Unsigned char, unsigned

short, unsigned int
Vertical slice number 1, 2, 4, 8, 16, 32
Transpose Offline, online
Texture memory for multiplied vector Yes, No
Workgroup size 64, 128, 256, 512
Strategy
1

Registers for the per-thread
intermediate sums array
(Reg_size)

0, 8, 16, 32

Shared memory for the per-
thread intermediate sums array
(ShM_size)

0, 8, 16, 32

Strategy
2

Thread-level tile size 8,16,24,32,40,64,96,128
Result cache size (multiple of
the workgroup size)

1,2,3,4

Table 2.Tunable parameters of the auto-tuning framework for

MIC.

Parameter Name Possible Values
Matrix format BCCOO
Col_index compress Yes, No
Block width 1, 2, 4
Block height 1, 2, 4
Data type for the bit flag array Unsigned char, unsigned

short, unsigned int
Workgroup size 1,2,4,8,16,32
Thread-level tile size 32~1024
Bunch size 1,2,4

ones on NVIDIA GTX680 and AMD W8000 GPUs. On NVIDIA GTX480, however, the
optimal configurations show 10.5% better performance for the matrix Epidemiology,
which prefers no texture memory usage, and 11.1% better performance for the matrix
Circuit, which prefers online transpose. As we can expect, a finer grain parameter
selection may further improve the performance. In addition, we find that block width,
block height, thread-level tile size, and bunch size are the parameters that top affect the
performance among all the parameters.

5. EXPERIMENTAL METHODOLOGY
Our experiments have been performed on six different platforms - Nvidia GTX680,
Nvidia GTX480 GPU, Tesla K20, GeForce Titan X, AMD FirePro W8000 and Intel
MIC SE10P. We use a total of 20 sparse matrices for performance evaluation. Table III
summarizes the information of the sparse matrices. These matrices have been widely
used in previous works [Bell and Garland 2009], [Choi et al. 2010], [Monakov et al.
2010], [Su and Keutzer 2012], [Liu and Vinter 2015], [Williams et al. 2009]. All matri-
ces except Dense are downloadable at the University of Florida Sparse Matrix Collec-
tion [Davis and Hu 2011]. In our experiments, we also use CUSPARSE V7.0 [NVIDIA
2014], CUSP [Bell and Garland 2009], clSpMV [Su and Keutzer 2012], and CSR5 [Li-
u and Vinter 2015] for performance comparisons. CUSPARSE supports three formats

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

A Cross-Platform SpMV Framework on Many-Core Architectures XXXX:17

Table III. The sparse matrices used in the experiments

5. Experimental Methodology
We implemented our proposed scheme in OpenCL[19]. Our experiments have been performed on both an Nvidia GTX680
GPU and an Nvidia GTX480 GPU.
We use a total of 20 sparse matrices, 14 of them are from [23] and 6 of them are from[16]. Table 2 summarizes the
information of the sparse matrices, including the size, total number of non-zeros, and number of non-zerosper row. These
matrices have been widely used in previous works [1][7][12][16][23].
In our experiments, we also use CUSPARSE V5.0[13],
CUSP[1], and clSpMV [16] for performance comparisons.
CUSPARSE supports three formats HYB, BCSR, and CSR.
As the HYB format is a hybrid format combining the
advantages of the ELL and COO formats, the row length of

the ELL part is configurable. We manually searched the row
length in a wide range and use the best performing one for
each matrix. For the BCSR format in CUSPARSE, we also
searched the block size for the best performance. For
clSpMV, besides the COCKTAIL format, which uses

Spyplot Name Size Non-zeros (NNZ) NNZ/Row
 Dense 2K * 2K 4000000 2000
 Protein 36K * 36K 4344765 119
 FEM/Spheres 83K * 83K 6010480 72
 FEM/Cantilever 62K * 62K 4007383 65
 Wind Tunnel 218K*218K 11634424 53
 FEM/Harbor 47K * 47K 2374001 59
 QCD 49K * 49K 1916928 39
 FEM/Ship 141K*141K 7813404 28
 Economics 207K*207K 1273389 6
 Epidemiology 526K*526K 2100225 4
 FEM/Accelerator 121K*121K 2620000 22
 Circuit 171K*171K 958936 6
 Webbase 1M * 1M 3105536 3

 LP 4K * 1.1M 11279748 2825
 Circuit5M 5.56M* 5.56M 59524291 11
 eu-2005 863K*863K 19235140 22
 Ga41As41H72 268K*268K 18488476 67
 in-2004 1.38M*1.38M 16917053 12
 mip1 66K* 66K 10352819 152
 Si41Ge41H72 186K*186K 15011265 81

HYB, BCSR, and CSR. We manually searched the best performing configuration for
each matrix. For the BCSR format in CUSPARSE, we also searched the block size for
the best performance. For clSpMV, besides the COCKTAIL format which uses different
formats for different partitions of a matrix, we also tested all the single formats and
chose the best performing one for each matrix. Since the CUDA code is not support-
ed on AMD platforms, we only compared our scheme with clSpMV on AMD FirePro
W8000. On Intel MIC, we compared our scheme with CSR5 [Liu and Vinter 2015]. The
code of our proposed framework is available at http://code.google.com/p/yaspmv/.

6. EXPERIMENTAL RESULTS
6.1. Memory footprint size comparison between different formats
We evaluate the impact of our proposed BCCOO/BCCOO+ format on memory band-
width. In BCCOO/BCCOO+ format, all the information, including the bit flag array,
the col index array, the data value array, and the auxiliary information described in
Section 2.4, is only read once. We assume that it is also the case for all the other for-
mats for comparison. Therefore, we can simply use the total size the arrays to show
the memory footprint of each format. The results are shown in Table IV. As our auto-
tuning framework selects the BCCOO+ format only for the matrix LP, we do not sepa-
rate the BCCOO and the BCCOO+ format. For some sparse matrices, due to the high
variance in the number of non-zeros in different row, the ELL format is not applica-
ble (labeled ’N/A’ in Table IV). From Table IV, we find that BCCOO/BCCOO+ format
significantly reduces the storage size of various sparse matrices. BCCOO/BCCOO+ for-
mat reduces the storage size by 40% on average compared with the COO format, 31%
on average compared with the best single format among all the 9 formats in clSpMV,
and 21% on average compared with the COCKTAIL format.

6.2. Performance on NVIDIA and AMD GPUs
We first examine the performance contributions from different optimizations in our
approach, including memory footprint reduction, efficient segmented sum/scan, adja-
cent synchronization to remove global synchronization, and fine-grain optimizations,

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

XXXX:18 Y. Zhang et al.

Table IV. The memory footprint size (MB) of different formats

Name COO ELL Cocktail Best Single BCCOO
Dense 48 32 17 17 17
Protein 52 59 40 34 21
FEM/Spheres 72 54 52 51 31
FEM/Cantilever 48 39 25 25 21
Wind Tunnel 140 314 78 78 65
FEM/Harbor 28 54 24 24 14
QCD 23 15 15 15 9
FEM/Ship 94 115 56 59 34
Economics 15 73 14 28 8
Epidemiology 25 17 17 17 14
FEM/Accelerator 31 79 26 25 17
Circuit 12 483 9 23 6
Webbase 37 N/A 29 138 27
LP 135 1927 91 91 85
Circuit5M 714 N/A 578 714 516
eu-2005 231 N/A 248 209 159
Ga41As41H72 222 1505 139 170 136
in-2004 203 N/A 209 203 132
mip1 124 N/A 66 54 51
Si41Ge41H72 180 983 118 135 105
Average 122 N/A 93 106 73

bestsingle format among all the 9 formats included in

clSpMV, and 21% compared to the COCKTAIL format.
In the second experiment, we compare the performance of
our proposed scheme to the state-of-art techniques. The
results of GTX680are shown in Figure 13 and the results of
our proposed approach are labeled ‘yaSpMV’ in the figure.
From the figure, we can see that our proposed approach
outperforms the existing schemes for all the matrices except
Dense. The Dense matrix prefers a block size of 2x8 as used
in the BCSR format from the ‘clSpMV best single’ results.
However, our auto-tuning framework limits the maximal
block height is limited to 4, thereby achieving sub-optimal
performance. Using the harmonic mean (H-mean) as the
average throughput, our yaSpMV achieves an average
performance improvement of 65% over CUSPARSE, 70%
over clSpMV COCKTAIL, 88% over clSpMV best single,
and 150% over CUSP.The highest performance
improvement of yaSpMV achieved over clSpMV
COCKTAIL is on matrix LP (195%). Compared to
CUSPARSE, the highest performance gain of yaSpMV is
from the matrix mip1 (229%).

In the third experiment, we examine the performance

contributions from different optimizations in our approach,
including memory footprint reduction, efficient segmented
sum/scan, adjacent synchronization to remove global
synchronization, and fine-grain optimizations,which consist
of (a) the use of the short data type for the col_index array
and (b) early check to skip the parallel scan on a
last_partial_sums array if each thread-level tile in a
workgroup-level tile contains a row stop. The results are
shown in Figure 14. We start with the COO format with a
tree-based segment sum (labeled ‘COO’). Then, we replace
the COO format with our BCCOO/BCCOO+ format
(labeled ‘BCCOO’). Next, we replace the tree-based
segmented sum with our proposed efficient matrix-based
segment sum/scan (labeled ‘Efficient segmented sum/scan’)
while using another kernel to accumulate partial sums
across workgroups. We then use adjacent synchronization to
replace this kernel (labeled ‘adjacent synchronization’) and
add the fine-grain optimizations (labeled ‘fine-gain
optimizations’). From the figure, we can see that the main
performance gains are from our proposed
BCCOO/BCCOO+ format and our efficient segmented
sum/scan for SpMV.

Figure 13. Performance comparison between our proposed scheme (labeled 'yaSpMV') and CUSPARSEV 5.0, CUSP,

clSpMV-best single, and clSpMV-COCKTAIL on GTX680 GPUs.

0

10

20

30

40

50

60

70
CUSPARSE CUSP clSpMV Cocktail clSpMV Best single yaSpMV

GF
LO

PS

Figure 14. Performance Contributions from different optimization techniques (GTX680)

0

10

20

30

40

50

60

70
COO BCCOO Efficient Segmented Sum/Scan Adjacent Synchronization Fine-Grain Optimizations

GF
LO

PS

Fig. 13. Performance contributions from different optimization techniques on GTX680 (in single-precision).

which consist of (a) the use of the short data type for the col index array and (b) skip
the parallel scan on a last partial sums array if possible. The results are shown in
Figure 13. We start with the COO format with a tree-based segment sum (labeled
’COO’). Then, we replace the COO format with our BCCOO/BCCOO+ format (labeled
’BCCOO’). Next, we replace the tree-based segmented sum with our proposed efficient
matrix-based segment sum/scan (labeled ’Efficient segmented sum/scan’), in which the
global synchronization is used to accumulate partial sums across workgroups. We then
replace the global synchronization by the adjacent synchronization (labeled ’adjacent
synchronization’) and add the fine-grain optimizations (labeled ’fine-gain optimization-
s’). From the figure, we can see that the main performance gains are from our proposed
BCCOO/BCCOO+ format and our efficient segmented sum/scan for SpMV.

Next, we compare the performance of our proposed scheme with the state-of-the-
art techniques on GPUs. The single-precision performance on GTX680 are shown in
Figure 14, in which our approach is labeled by ’yaSpMV’. We can see that yaSpMV
outperforms the existing schemes for all the matrices except Dense. The Dense matrix
prefers a block size of 2x8 in the BCSR format, which is selected as the best single for-
mat of clSpMV for Dense matrix. However, our auto-tuning framework limits the maxi-

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

A Cross-Platform SpMV Framework on Many-Core Architectures XXXX:19

0

10

20

30

40

50

60

70

G
FL
O
P
S

CUSP clSpMV Cocktail clSpMV Best single yaSpMV

0

10

20

30

40

50

60

G
FL
O
P
S

CUSP clSpMV Cocktail clSpMV Best single yaSpMV

Fig. 14. Single-precision performance comparison between our proposed scheme (labeled ’yaSpMV’) and
CUSP, clSpMV-best single, and clSpMV-COCKTAIL on GTX680 GPUs.

0

10

20

30

40

50

60

70

G
FL
O
P
S

CUSP clSpMV Cocktail clSpMV Best single yaSpMV

0

10

20

30

40

50

60

G
FL
O
P
S

CUSP clSpMV Cocktail clSpMV Best single yaSpMV

Fig. 15. Single-precision performance comparison between our proposed scheme (labeled ’yaSpMV’) and
CUSP, clSpMV-best single, and clSpMV-COCKTAIL on GTX480 GPUs.

0

10

20

30

40

50

60

70

G
FL
O
P
S

CUSPARSE CSR5 yaSpMVST2

ST2
ST2

ST2
ST2

ST2
ST2

ST2

ST1
ST1

ST2

ST1 ST1

ST1

ST1
ST1

ST1
ST1

ST2

ST1

Fig. 16. Single-precison performance comparison between our proposed scheme (labeled ’yaSpMV’) and
CUSPARSE V7.0, and CSR5 on Nvidia Tesla K20. We also mark the performance winner between strategy
(1) (labeled ’ST1’) and strategy (2) (labeled ’ST2’) for yaSpMV.

mal block height to 4, thereby achieving sub-optimal performance. Using the harmonic
mean (H-mean) as the average throughput, yaSpMV achieves an average performance
improvement of 65% over CUSPARSE, 70% over clSpMV COCKTAIL, 88% over clSp-
MV best single, and 150% over CUSP. The highest performance gain of yaSpMV over
clSpMV COCKTAIL is achieved on matrix LP (195%). Compared with CUSPARSE,
the highest performance gain of yaSpMV is achieved on matrix mip1 (229%).

We further evaluate the single-precision performance of SpMV on Nvidia GTX480
GPUs, Tesla K20, GeForce Titan X, and AMD FirePro W8000 GPUs. The results are
shown in Figure 15, Figure 16, Figure 17 and Figure 18. On Nvidia GTX 480, our
proposed yaSpMV achieve significantly higher performance than existing approaches
(up to 162% better than clSpMV COCKTAIL and up to 150% better than CUSPARSE),

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

XXXX:20 Y. Zhang et al.

0

20

40

60

80

100

120

G
FL
O
P
S

CUSPARSE CSR5 yaSpMVST2
ST2

ST2
ST2

ST2
ST2

ST2 ST2

ST1

ST1

ST2

ST1
ST1

ST1 ST1
ST1 ST1 ST1

ST2

ST1

Fig. 17. Single-precison performance comparison between our proposed scheme (labeled ’yaSpMV’) and
CUSPARSE V7.0, and CSR5 on GeForce Titan X GPUs. We also mark the performance winner between
strategy (1) (labeled ’ST1’) and strategy (2) (labeled ’ST2’) for yaSpMV.

0

10

20

30

40

50

60

70

G
FL
O
P
S

clSpMV Cocktail clSpMV Best single CSR5 yaSpMV

ST2
ST2 ST2

ST2

ST2

ST2

ST2

ST1
ST1

ST2

ST2

ST1

ST1
ST1

ST1

ST1

ST1 ST1

ST2

ST2

Fig. 18. Single-precision performance comparison between our proposed scheme (labeled ’yaSpMV’) and
clSpMV-best single, clSpMV-COCKTAIL, and CSR5 on AMD FirePro W8000 GPUs. We also mark the per-
formance winner between strategy (1) (labeled ’ST1’) and strategy (2) (labeled ’ST2’) for yaSpMV.

as shown in Figure 15. The only exception is the Epidemiology matrix. It has 4 non-
zeros on each row, which is a perfect fit for the ELL format. For this matrix, yaSpMV
has a suboptimal performance of 25.5 GFLOPS. The best performing approach for this
matrix, CUSPARSE, has a throughput of 28.5 GFLOPS. On average using H-mean,
yaSpMV achieves a performance improvement of 40% over clSpMV COCKTAIL, 60%
over clSpMV best single, 74% over CUSP, and 42% over CUSPARSE. As shown in
Figure 16 and Figure 17, yaSpMV achieves the performance improvement of 65.8%
on average on Tesla K20 and 73.7% on average on GeForce Titan X over CUSPARSE
V7.0; and achieves the performance improvement of 56.4% on average on Tesla K20
and 53.6% on average on GeForce Titan X over the recently proposed format - CSR5.

As shown in Figure 18, on AMD FirePro W8000, yaSpMV performs better than clSp-
MV COCKTAIL format on most matrices, and the performance improvement is up to
2617% and on average 255%. Although there are only 9 matrices which our proposed
yaSpMV performs better than the clSpMV best single format, yaSpMV also achieves
a performance gain of 40% on average. Compared with CSR5, yaSpMV achieves a per-
formance gain of 14.9% on average.

To further understand how strategy (1) and strategy (2) of yaSpMV perform on Tesla
K20, GeForce Titan X, and AMD FirePro W8000, we mark the performance winner
between these two strategies in Figures 16, 17, and 18. We find that both strategies are
the potential winner for different sparse matrices, which demonstrates the necessity
of the coexistence of the two strategies in our scheme.

We also evaluate the double-precision performance of SpMV on Tesla K20 and AMD
FirePro W8000 GPUs. The results are shown in Figure 19, Figure 20, Figure 21 and

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

A Cross-Platform SpMV Framework on Many-Core Architectures XXXX:21

0

10

20

30

40

50

60

70

G
FL
O
P
S

clSpMV Cocktail clSpMV Best single CSR5 yaSpMV

AMD single

AMD double

0

10

20

30

40

50

60

70

G
FL
O
P
S

CUSPARSE CSR5 yaSpMV

K20 single

0

5

10

15

20

25

30

35

G
FL
O
P
S

CUSPARSE CSR5 yaSpMV

K
2
0
d
o
u
b
l
e

0

20

40

60

80

100

120

G
FL
O
P
S

CUSPARSE yaSpMV

0

5

10

15

20

25

30

35

G
FL
O
P
S

CSR5 yaSpMV

Fig. 19. Double-precison performance comparison between our proposed scheme (labeled ’yaSpMV’) and
CUSPARSE V7.0, and CSR5 on Nvidia Tesla K20.

0

10

20

30

40

50

60

70

G
FL
O
P
S

clSpMV Cocktail clSpMV Best single CSR5 yaSpMV

AMD single

AMD double

0

10

20

30

40

50

60

70

G
FL
O
P
S

CUSPARSE CSR5 yaSpMV

K20 single

0

5

10

15

20

25

30

35

G
FL
O
P
S

CUSPARSE CSR5 yaSpMV

K
2
0
d
o
u
b
l
e

0

5

10

15

20

25

30

35

G
FL
O
P
S

CSR5 yaSpMV

Fig. 20. Double-precision performance comparison between our proposed scheme (labeled ’yaSpMV’) and
clSpMV-best single, clSpMV-COCKTAIL and CSR5 on AMD FirePro W8000 GPUs.

0

2

4

6

8

10

12

14

16

18

G
FL
O
P
S

bunch size=2, block height=4 bunch size=4, block height=2

bunch size=4, block height=4 bunch size=8, block height=2

Fig. 21. Double-precision performance of our proposed scheme with different ’bunch size’ and ’block height’
on Intel MIC.

Figure 22. As shown in Figure 19, on Tesla K20, yaSpMV achieves the performance
improvement of 34.0% on average over CUSPARSE V7.0 and 16.2% on average over
CSR5. As shown in Figure 20, on AMD FirePro W8000, yaSpMV achieves the perfor-
mance improvement of 9.7% on average over CSR5.

6.3. Performance on Intel MIC
Figure 21 presents the results of our proposed scheme with different ’bunch size’ and
’block height’ on Intel MIC. We can see that under different configurations of this two
parameters, the performance varies largely. This is because the multiplication of these
two parameters determines the width of SIMD instructions on Intel MIC, as discussed
in Section 3.2.2. When it fits to the width of 512-bit with less zero elements (determined
by the value of ’block height’), it can get the best performance. Thus, we need the auto-
tuning framework to select the best configuration. As shown in Figure 22, the auto-

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

XXXX:22 Y. Zhang et al.

0

2

4

6

8

10

12

14

16

18

G
FL
O
P
S

CSR5 yaSpMV

Fig. 22. Double-precision performance comparison between our proposed scheme (labeled ’yaSpMV’) and
CSR5 on Intel MIC.

0

5

10

15

20

25

30

35

40

45

G
FL
O
P
S

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

Efficie
n
cy

Throughput on K20 Throughput on W8000 Throughput on MIC

Performance efficiency on K20 Performance efficiency on W8000 Performance efficiency on MIC

Fig. 23. Double-precision performance of yaSpMV on Nvidia Tesla K20, AMD FirePro W8000 and Intel
MIC.

tuned yaSpMV gets an average of 8.97 Gflops for the sparse matrixes on Intel MIC in
double precision, which is comparable with CSR5 (an average of 9.01 Gflops).

We also compare the performance between GPUs (Nvidia Tesla K20 and AMD Fire-
Pro W8000) and Intel MIC in the context of yaSpMV, and the results is presented in
Figure 23. Note that the double-precision peak performance of Nvidia Tesla K20, AMD
FirePro W8000 and Intel MIC is 1.17 Tflops, 806 Gflops and 1.011 Tflops, respectively.
We find that both the throughput and the performance efficiency of GPUs are higher
than Intel MIC. The average performance efficiency of yaSpMV on Nvidia K20, AMD
W8000, and Intel MIC is 1.54%, 2.27%, and 0.82%, respectively. The lower efficiency
of yaSpMV on Intel MIC is caused by the following reasons: (1) BCCOO is a block-
based format to exploit the register reusing. However, register blocking leads to low
SIMD efficiency on Intel MIC [Liu et al. 2013]. Although we coarsen the workload of
each thread to improve the SIMD efficiency, it still brings some performance penalty;
(2) Intel MIC is lack of texture cache, which is more useful for the irregular accesses
of the multiplied vector. Thus, the load imbalance of each thread caused by irregular
accesses is more severe on Intel MIC.

7. RELATED WORK
Bolz et al. first introduced the GPUs for SpMV [Bolz et al. 2003]. Bell and Garland
[Bell and Garland 2009] implemented several well-known formats on Nvidia GPUs.
These formats include DIA, ELL, CSR, COO and a hybrid format HYB, which com-
bines the advantage of the ELL and COO formats. Su et al. [Su and Keutzer 2012]
proposed the COCKTAIL format, which uses different formats to represent different
partitions of a matrix. Vzquez et al. [Vázquez et al. 2011] proposed a derivative format
of ELLPACK, ELL-R. They use an auxiliary array to store the row lengths. Alexander
et al. [Monakov et al. 2010] proposed the Sliced ELL format (SELL). They horizontally

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

A Cross-Platform SpMV Framework on Many-Core Architectures XXXX:23

partition the original matrix into several slices to reduce the filling zeros. Compared
with the ELL format, the ELL-R and SELL formats have less padding zeros. Kreutzer
et al. [Kreutzer et al. 2014] proposed SELL-C-σ, which is a variant of SELL. To further
reduce the padding overhead, the rows are sorted by the number of non-zero entries
within a ”sorting scope” σ. SELL-C-σ is SIMD-friendly, and suitable for different ar-
chitectures, including GPU, Intel MIC, and CPU. Compared with SELL-C-σ, yaSpMV
exploits register reusing and may have less padding zeros. However, the block-based
design of yaSpMV makes it less suitable for Intel MIC than SELL-C-σ. We did not com-
pare the performance of yaSpMV with SELL-C-σ, since the source code is not available
to us yet. Liu et al. [Liu et al. 2013] proposed the ESB format for Intel MIC, which ex-
tends the ELLPACK format with finite-window sorting for high SIMD efficiency, a bit
array to encode nonzero locations for lower padding overhead, and column blocking for
good locality. The column blocking method used in ESB motivates us to propose the
BCCOO+ format to improve the locality when accessing the multiplied vector.

Based on the CSR format, Kozaa et al. [Koza et al. 2012] proposed a compressed
multiple-row storage format for SpMV on GPUs. The advantage of this format is that
the adjacent rows may be processed by the same thread, so the multiplied vector data
could be reused. Choi et al. implemented the BCSR and BELL formats on GPUs [Choi
et al. 2010] and proposed an auto-tuning framework. CSR-Adaptive [Greathouse and
Daga 2014] is proposed to exploit the performance of SpMV with CSR format on GPUs.
We tried to compare the performance of yaSpMV with CSR-Adaptive, which is imple-
mented in ViennaCL. However, loading the sparse matrix from the disk to memory
in ViennaCL is too time consuming (more than several days for some large matrices).
Thus, we terminated the experiments on this format. Daga and Greathouse [Daga and
Greathouse 2015] further improved CSR-Adaptive using novel reduction techniques
and proposed a new SpMV algorithm for the irregular matrices with very long rows.
Liu et al. presented CSR5 [Liu and Vinter 2015], which is insensitive to the sparsi-
ty structure of the input matrix and features fast format convention. Compared with
CSR5, yaSpMV has almost equivalent performance on Intel MIC, and has an advan-
tage on Nvidia and AMD GPUs. Liu and Schmidt [Liu and Schmidt 2015] proposed
LightSpMV, which uses the standard CSR format and improves the performance by
fine-grained dynamic distribution of matrix rows over warps and vectors.

There are some works focusing on compression and reordering techniques as well
[Buluç et al. 2011], [Pichel et al. 2012]. The challenge of compression technique is
the complexity of the decompression algorithm. The problem with the reordering tech-
nique is that it changes the inherent locality of the original matrix. A recent work by
Tang et al. [Tang et al. 2013] studies bit-representations to compress index arrays.
Similar to our work, a difference function is applied to index arrays. The difference
from our proposed formats is that a bit packing scheme is then used to encode the
delta values, which makes their decompression scheme more complicated than ours
and also does not exploit the row stop information.

Blelloch et al. [Blelloch et al. 1993] first introduced the segmented operations to Sp-
MV on vector multiprocessors. Harris [Harris et al. 2007] implemented the segmented
scan based SpMV in the library CUDPP. Because they used a tree based scan algo-
rithm, which has been shown to be inefficient [Yan et al. 2013], the performance is
limited. Baskaran et al. [Baskaran and Bordawekar 2008] implemented a more effi-
cient segmented scan based SpMV using the matrix based scan [Dotsenko et al. 2008].
However, their scan-based implementation also is outperformed by their alternative
implementations [Baskaran and Bordawekar 2008]. Bell and Garland implemented
their COO format use the segmented reduction (scan) algorithm. However, due to the
disadvantage of the COO format and the two-kernel implementation, the performance
is not highly competitive. Different from the previous works, we propose the new BC-

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

XXXX:24 Y. Zhang et al.

COO/BCCOO+ format to drastically reduce the bandwidth requirement and efficient
segmented sum/scan algorithms on different many-core architectures. Our algorithm
only needs one kernel and explores a number of optimization techniques.

8. CONCLUSIONS
In this paper, we present yet another framework for SpMV on many-core architec-
tures, including GPUs and Intel MIC. First, we propose a new format, called blocked
compressed common coordinate (BCCOO), for sparse matrices. The key idea is to ex-
tend the COO format with blocking and to use a bit flag array to replace the row index
array. We also propose to vertically partition a sparse matrix before using the BC-
COO format, for better locality of the accesses to the multiplied vector. Second, we pro-
pose a highly efficient matrix-based segmented sum/scan for SpMV. Our matrix-based
segmented sum/scan is closely coupled to our BCCOO/BCCOO+ format to reduce the
memory bandwidth and achieve load balance. Third, we propose an auto-tuning frame-
work to further improve the performance with low overhead.

Our performance results from a set of 20 sparse matrices show that our pro-
posed framework significantly advances the state-of-the-art SpMV schemes. In single-
precision, yaSpMV outperforms CUSPARSE 7.0 by 65.8% on average on Tesla K20,
by 73.7% on average on GeForce Titan X; outperforms clSpMV COCKTAIL format by
40% on average on GTX480 GPUs, by 70% on average on GTX680 GPUs, by 255%
on average on AMD FirePro W8000 GPUs; and outperforms CSR5 by 56.4% on aver-
age on Tesla K20, by 53.6% on average on GeForce Titan X, by 14.9% on average on
AMD FirePro W8000. In double-precision, yaSpMV outperforms CUSPARSE V7.0 by
34.0% on average on Tesla K20; and outperforms CSR5 by 16.2% on average on Tesla
K20, by 9.7% on average on AMD FirePro W8000. On Intel MIC, yaSpMV has almost
equivalent performance compared with CSR5.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China under Grant No. 61502450,
Grant No. 61432018, Grant No. 61521092, and Grant No. 61272136; National Key Research and Devel-
opment Program of China under Grant No.2016YFB0200803; NSF project 1216569; and a gift fund from
AMD Inc. Shigang Li and Shengen Yan are the corresponding authors. The authors would like to thank the
Supercomputing Center of CAS for providing free Intel MIC machines.

REFERENCES
Muthu Manikandan Baskaran and Rajesh Bordawekar. 2008. Optimizing sparse matrix-vector multiplica-

tion on GPUs using compile-time and run-time strategies. IBM Reserach Report, RC24704 (W0812-047)
(2008).

Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-vector multiplication on throughput-
oriented processors. In Proceedings of the Conference on High Performance Computing Networking, S-
torage and Analysis. ACM, 18.

Guy E Blelloch. 1989. Scans as primitive parallel operations. Computers, IEEE Transactions on 38, 11
(1989), 1526–1538.

Guy E Blelloch, Michael A Heroux, and Marco Zagha. 1993. Segmented operations for sparse matrix compu-
tation on vector multiprocessors. Technical Report. DTIC Document.

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröoder. 2003. Sparse matrix solvers on the GPU:
conjugate gradients and multigrid. In ACM Transactions on Graphics (TOG), Vol. 22. ACM, 917–924.

Aydın Buluç, Samuel Williams, Leonid Oliker, and James Demmel. 2011. Reduced-bandwidth multithread-
ed algorithms for sparse matrix-vector multiplication. In Parallel & Distributed Processing Symposium
(IPDPS), 2011 IEEE International. IEEE, 721–733.

Jee W Choi, Amik Singh, and Richard W Vuduc. 2010. Model-driven autotuning of sparse matrix-vector
multiply on GPUs. In ACM Sigplan Notices, Vol. 45. ACM, 115–126.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

A Cross-Platform SpMV Framework on Many-Core Architectures XXXX:25

Mayank Daga and Joseph L Greathouse. 2015. Structural Agnostic SpMV: Adapting CSR-Adaptive for Ir-
regular Matrices. In 2015 IEEE 22nd International Conference on High Performance Computing (HiPC).
IEEE, 64–74.

Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix collection. ACM Transactions
on Mathematical Software (TOMS) 38, 1 (2011), 1.

Yuri Dotsenko, Naga K Govindaraju, Peter-Pike Sloan, Charles Boyd, and John Manferdelli. 2008. Fast
scan algorithms on graphics processors. In Proceedings of the 22nd annual international conference on
Supercomputing. ACM, 205–213.

Joseph L Greathouse and Mayank Daga. 2014. Efficient sparse matrix-vector multiplication on GPUs using
the CSR storage format. In SC14: International Conference for High Performance Computing, Network-
ing, Storage and Analysis. IEEE, 769–780.

Mark Harris, John Owens, Shubho Sengupta, Yao Zhang, and Andrew Davidson. 2007. CUDPP: CUDA data
parallel primitives library. (2007).

Zbigniew Koza, Maciej Matyka, Sebastian Szkoda, and Łukasz Mirosław. 2012. Compressed multiple-row
storage format. Technical Report.

Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R Bishop. 2014. A unified sparse
matrix data format for efficient general sparse matrix-vector multiplication on modern processors with
wide SIMD units. SIAM Journal on Scientific Computing 36, 5 (2014), C401–C423.

ShiGang Li, ChangJun Hu, JunChao Zhang, and YunQuan Zhang. 2015. Automatic tuning of sparse matrix-
vector multiplication on multicore clusters. Science China Information Sciences 58, 9 (2015), 1–14.

Weifeng Liu and Brian Vinter. 2015. Csr5: An efficient storage format for cross-platform sparse matrix-
vector multiplication. In Proceedings of the 29th ACM on International Conference on Supercomputing.
ACM, 339–350.

Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. 2013. Efficient sparse matrix-vector
multiplication on x86-based many-core processors. In Proceedings of the 27th international ACM confer-
ence on International conference on supercomputing. ACM, 273–282.

Yongchao Liu and Bertil Schmidt. 2015. LightSpMV: faster CSR-based sparse matrix-vector multiplication
on CUDA-enabled GPUs. In 2015 IEEE 26th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE, 82–89.

Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan. 2010. Automatically tuning sparse matrix-
vector multiplication for GPU architectures. In High Performance Embedded Architectures and Compil-
ers. Springer, 111–125.

CUDA NVIDIA. 2014. CUSPARSE library. NVIDIA Corporation, Santa Clara, California (2014).
Juan C Pichel, Francisco F Rivera, Marcos Fernández, and Aurelio Rodrı́guez. 2012. Optimization of sparse

matrix–vector multiplication using reordering techniques on GPUs. Microprocessors and Microsystems
36, 2 (2012), 65–77.

Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D Owens. 2007. Scan primitives for GPU com-
puting. In Graphics hardware, Vol. 2007. 97–106.

John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel programming standard for het-
erogeneous computing systems. Computing in science & engineering 12, 1-3 (2010), 66–73.

Bor-Yiing Su and Kurt Keutzer. 2012. clSpMV: A cross-platform OpenCL SpMV framework on GPUs. In
Proceedings of the 26th ACM international conference on Supercomputing. ACM, 353–364.

Wai Teng Tang, Wen Jun Tan, Rajarshi Ray, Yi Wen Wong, Weiguang Chen, Shyh-hao Kuo, Rick Siow Mong
Goh, Stephen John Turner, and Weng-Fai Wong. 2013. Accelerating sparse matrix-vector multiplication
on GPUs using bit-representation-optimized schemes. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. ACM, 26.

Sain-Zee Ueng, Melvin Lathara, Sara S Baghsorkhi, and W Hwu Wen-mei. 2008. CUDA-lite: Reducing GPU
programming complexity. In Languages and Compilers for Parallel Computing. Springer, 1–15.

Francisco Vázquez, José-Jesús Fernández, and Ester M Garzón. 2011. A new approach for sparse matrix
vector product on NVIDIA GPUs. Concurrency and Computation: Practice and Experience 23, 8 (2011),
815–826.

Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and James Demmel. 2009.
Optimization of sparse matrix–vector multiplication on emerging multicore platforms. Parallel Comput.
35, 3 (2009), 178–194.

Shengen Yan, Guoping Long, and Yunquan Zhang. 2013. StreamScan: fast scan algorithms for GPUs with-
out global barrier synchronization. In ACM SIGPLAN Notices, Vol. 48. ACM, 229–238.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, Article XXXX, Publication date: August 2016.

