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Sparse matrix-vector multiplication (SpMV) is a key operation in engineering and scientific computing. Al-
though the previous work has shown impressive progress in optimizing SpMV on many-core architectures,
load imbalance and high memory bandwidth remain the critical performance bottlenecks. We present our
novel solutions to these problems, for both GPUs and Intel MIC many-core architectures. First, we devise
a new SpMV format, called blocked compressed common coordinate (BCCOO). BCCOO extends the blocked
common coordinate (COO) by using bit flags to store the row indices to alleviate the bandwidth problem. We
further improve this format by partitioning the matrix into vertical slices for better data locality. Then, to
address the load imbalance problem, we propose a highly efficient matrix-based segmented sum/scan algo-
rithm for SpMV, which eliminates global synchronization. At last, we introduce an auto-tuning framework to
choose optimization parameters. Experimental results show that our proposed framework has a significant
advantage over the existing SpMV libraries. In single-precision, our proposed scheme outperforms clSpMV
COCKTAIL format by 255% on average on AMD FirePro W8000, and outperforms CUSPARSE V7.0 by
73.7% on average and outperforms CSR5 by 53.6% on average on GeForce Titan X; in double-precision, our
proposed scheme outperforms CUSPARSE V7.0 by 34.0% on average and outperforms CSR5 by 16.2% on
average on Tesla K20, and has equivalent performance compared with CSR5 on Intel MIC.
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1Extension of Conference Paper. The additional contributions of this manuscript over the previously
published work of S. Yan et al at PPoPP-2014 include:
1. This paper extends our proposed BCCOO format for Intel Xeon Phi processors by introducing inner-block
transpose (Section 3.2.2).
2. We propose a new segmented sum/scan strategy for Intel Xeon Phi processors to explore the potential
performance of their 512-bit SIMD instructions (Section 3.2.2).
3. We present the experimental results on Intel Xeon Phi processor, and compare the performance with
NVIDIA and AMD GPUs in the context of yaSpMV (Section 6).
4. We also extend the yaSpMV library to support double precision (Section 3.2.3) and present the
experimental results in Section 6.
The new material is more than one-third of our PPoPP-2014 paper.
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1. INTRODUCTION
Sparse matrix-vector multiplication (SpMV) is a key linear algebra algorithm and is
heavily used in many important application domains. Many-core architectures feature
high computational throughput and memory access bandwidth, which are the promis-
ing targets to accelerate the workloads like SpMV. According to the granularity of each
core, many-core architectures can be divided into two categories. The first is based on
massive light cores, like NVIDIA and AMD GPUs, and high throughput is achieved by
massive fine-grained parallelism. The second is based on many heavy cores, in which
both coarse-grained and fine-grained parallelism are supported. Intel Many Integrat-
ed Core (Intel MIC) architecture belongs to the second category. This paper aims at
proposing a high performance SpMV framework for these two kinds of many-core ar-
chitectures.

Although the sequential implementation of SpMV is straightforward, its parallel im-
plementation is quite challenging, especially on many-core architectures. Firstly, since
the non-zeros in a matrix may not be evenly distributed across different rows, the row-
based parallelization usually suffers from the load imbalance problem. This problem is
more severe on GPU architectures, since the threads operate in the single-instruction
multiple-thread (SIMT) manner and the execution time is literally determined by the
slowest thread. Secondly, SpMV puts high pressure on the memory hierarchy. The ma-
trix data exhibit poor data reuse, as each non-zero element is only used once for com-
puting the corresponding dot product. Besides, the access pattern of the multiplied
vector is irregular, due to the discontinuous locations of the non-zeros in each row. On
GPUs, memory coalescing [Ueng et al. 2008], namely all the threads in a warp access
the consecutive memory address, is a key factor to achieve high memory bandwidth.
However, irregular accesses will destroy memory coalescing, which makes the memory
accesses serialized.

There has been a lot of research on accelerating SpMV by many-core processors. To
reduce the memory footprint size and fully exploit the performance of the many-core
architectures, researcher have proposed a bunch of many-core-oriented storage format-
s, such as COO[Bell and Garland 2009], ELLPACK [Bell and Garland 2009], ELL-R
[Vázquez et al. 2011], SELL [Monakov et al. 2010], BCSR and BELL [Choi et al. 2010],
ESB [Liu et al. 2013], and SELL-C-σ [Kreutzer et al. 2014]. On the other hand, the
compressed sparse row (CSR) format is still dominant on traditional CPU architec-
tures because of high performance and good compression. Recent research work [Daga
and Greathouse 2015], [Liu and Schmidt 2015], [Greathouse and Daga 2014] proposed
new algorithms for CSR-based SpMV, which attempted to make the CSR format al-
so achieve high performance on many-core architectures. Furthermore, given the d-
ifferent features of target hardware platforms and different characteristics of sparse
matrices, offline auto-tuning or benchmarking [Choi et al. 2010], [Li et al. 2015] is com-
monly used to improve the performance. Although previous work has achieved impres-
sive performance improvement for SpMV, load imbalance and high memory bandwidth
requirement remain the fundamental performance bottlenecks of SpMV.

In this paper, we propose our novel solution to SpMV. Since the proposed solution is
yet another SpMV framework, we name it as yaSpMV. We first propose a new format
for sparse matrices to alleviate the memory bandwidth pressure. Our new format is
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referred to as blocked compressed common coordinate (BCCOO), as it is built upon the
common coordinate (COO) format. The BCCOO format extends the COO format with
blocking to reduce the size for both row and column index arrays. Then, it uses bit-
flags to drastically reduce the size of the row index array. To improve the data locality
of the multiplied vector, we partition the sparse matrix into vertical slices and align
the slices in a top-down manner. Such vertically-partitioned BCCOO is referred to as
the BCCOO+ format.

To address the load imbalance problem, we design a new highly optimized segment-
ed scan/sum kernel for SpMV. In our approach, each thread processes the same num-
ber of consecutive non-zero blocks and performs sequential segmented scans/sums to
generate partial sum results. Then, each workgroup/thread block will run the parallel
segmented scan on the last partial sum results. When the final dot-product results re-
quire accumulating partial sums across multiple workgroups/thread blocks, adjacent
synchronization [Yan et al. 2013] is used to eliminate the overhead of global synchro-
nization. To further improve the performance of our SpMV kernel, we also introduce
an auto-tuning framework to explore optimization parameters for different sparse ma-
trices and different platforms. The parameters to be tuned form a large search space.
We prune the search space of the parameters using some heuristics and reduce the
auto-tuning time to a few seconds.

The yaSpMV framework is implemented based on OpenCL [Stone et al. 2010], which
supports general purpose parallel programming on heterogeneous computing plat-
forms, including GPUs and Intel MIC. Experimental results show that our proposed
single format fits nearly all of the 20 sparse matrices used in the experiments. In
single-precision, compared with the vendor-tuned library CUSPARSE V7.0, our pro-
posed scheme achieves 73.7% on average on GeForce Titan X; compared with the clSp-
MV [Su and Keutzer 2012], which combines advantages of many existing formats, our
proposed scheme achieves up to 195% and 70% on average on GTX680 GPUs, up to
2617% and 255% on average on AMD FirePro W8000 GPUs; compared with CSR5
[Liu and Vinter 2015], our proposed scheme achieves a performance gain of 53.6%
on average on GeForce Titan X, and 14.9% on average on AMD FirePro W8000. In
double-precision, our proposed scheme outperforms CUSPARSE V7.0 by 34.0% on av-
erage on Tesla K20; and outperforms CSR5 by 16.2% on average on Tesla K20, by 9.7%
on average on AMD FirePro W8000. On Intel MIC, our proposed scheme has almost
equivalent performance compared with CSR5.

The remainder of this paper is organized as follows. Section 2 presents our pro-
posed BCCOO/BCCOO+ format for sparse matrices. Section 3 details our proposed
customized matrix-based segmented scan/sum approach for SpMV. Section 4 summa-
rizes our auto-tuning framework. The experimental methodology and the results are
discussed in Sections 5 and 6, respectively. Section 7 addresses the related work. Sec-
tion 8 concludes the paper.

2. THE BLOCK-BASED COMPRESSED COMMON COORDINATE (BCCOO) FORMAT
Our proposed block-based compressed common coordinate (BCCOO) format builds up-
on the common coordinate (COO) format. In this section, we first present the COO
format as the background, and then introduce the BCCOO format and its extension −
BCCOO+. We will use the sparse matrix in Figure 1 as an example.

2.1. COO Format
The COO format is a widely used format for sparse matrices. It has explicit storage
for the column and row indices for all non-zeros in a sparse matrix. For example, the
matrix in Figure 1 can be represented with a row index array, a column index array,
and a data value array, as shown in Figure 2.
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Row_index = [0		0		0		1		1		1		2		2		2		2		3		3		3		3		3		3] 
Col_index = [2		6		7		2		3		6		4		5		6		7		0		1		4		5		6		7] 

Value = [a		b			c		d		e		f			g		h			i			j			k		l		m		n		o		p] 

A = ൦

0 0 ܽ 0 0 0 ܾ ܿ
0 0 ݀ ݁ 0 0 ݂ 0
0 0 0 0 ݃ ℎ ݅ ݆
݇ ݈ 0 0 ݉ ݊ ݋ ݌

൪ 

Fig. 1. An example of sparse matrix.
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Figure 1.The COO format of matrix A. 
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Row_index ൌ ሾ0 0 0 1 1 1 	2		2		2		2		3		3		3		3		3 3ሿ

Col_index ൌ ሾ2 6 7 2 3 6 	4		5		6		7		0		1		4		5		6 7ሿ

Value ൌ ሾܽ ܾ ܿ ݀ ݁ ݂ ݋		݊		݉		݈		݇		݆		݅		݄		݃	 ሿ݌

A ൌ ൦

0 0 ܽ 0 0 0 ܾ ܿ
0 0 ݀ ݁ 0 0 ݂ 0
0 0 0 0 ݃ ݄ ݅ ݆
݇ ݈ 0 0 ݉ ݊ ݋ ݌

൪ 

Fig. 2. The COO format of matrix A.

The parallelization strategy suitable with COO is segmented scan/reduction [Bell
and Garland 2009]. As highlighted in [Bell and Garland 2009], [Su and Keutzer 2012],
the advantage of the COO format is that it does not suffer from the load imbalance
problem, and can achieve consistent performance over different types of sparse matri-
ces. However, the key problem of the COO format is that it needs to explicitly store
both the row index and the column index for every non-zero element. Therefore, it has
the worst memory footprint [Su and Keutzer 2012].

2.2. BCCOO Format
The BCCOO format extends the COO format in two ways. First, we combine the block-
based design with the COO format. In block-based formats, such as blocked ELLPACK
and blocked CSR [Choi et al. 2010], one block of data values will share the same row
index and the same column index. Therefore, the storage overhead of the row index
array and the column index array can be significantly reduced. Figure 3 shows the
blocked COO (BCOO) format of the matrix A in Figure 1 with the block size of 2×2.
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Figure 2.The blocked COO format of matrix A with the block 
size of 2x2. 

From Figure 2, we can see that there are 5 non-zero blocks. 
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Figure 3.The BCCOO format of matrix A with the block size of 
2x2. 
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(a)

                                            (b) 
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ሾ݀ ݁ ݇ ݈ ݂ 0 ݉ ሿ݌		݋		݊
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Col_index ൌ ሾ1 0 3 2 3ሿ   (uncompressed) 

B ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 ܽ 0
0 0 ݀ ݁
0 0 0 0
݇ ݈ 0 0
0 0 ܾ ܿ
0 0 ݂ 0
݃ ݄ ݅ ݆
݉ ݊ ݋ ے݌

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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Value ൌ ൬
ሾܽ		0		ܾ		ܿ		0		0		݃		݄			݅ ݆ሿ
ሾ݀		݁		݂		0		݇		݈		݉		݊		݋ ሿ݌

൰ 

Fig. 3. The blocked COO format of matrix A with the block size of 2×2.
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)
, and its block-based row index and column index are 0 and 1,

respectively. The next non-zero 2×2 block is
(
b c
f 0

)
, and its blocked-based row index

and column index are 0 and 3, respectively. Note that in Figure 3, we use two arrays
rather than a single array to store the data value. For a block size with the height
larger than 1, we put different rows in different arrays, such that both the row index
and column index can be used directly to index the data in each of the value arrays.
Such data arrangement is also helpful for contiguous memory accesses. The same as
all the block-based formats, the BCOO format may contain zero elements even in a
non-zero block.
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2.2 BCCOO Format 
Our proposed BCCOO format extends the COO format in 
two ways. First, we incorporate the block-based format to 
the COO format. In block-based formats such as blocked 
ELLPACK and blocked CSR[7], a non-zero block is stored 
consecutively. This way, one block of data values will share 
the same row index and the same column index. Therefore, 
the storage overhead of the row index array and the column 
index array can be significantly reduced. For matrix A in Eq. 
1, if a block size of 2x2 is used, the blocked COO (BCOO) 
format has the index arrays and the data value array shown 
in Figure 2. 

 

 

 
 

 

 

Figure 2.The blocked COO format of matrix A with the block 
size of 2x2. 

From Figure 2, we can see that there are 5 non-zero blocks. 
Both the row index array and the column index array have 
been reduced significantly. The first non-zero 2x2 block is 

ቀܽ 0
݀ ݁

ቁ and its block-based row index and column index are 

0 and 1, respectively. The next non-zero 2x2 block is 

൬
ܾ ܿ
݂ 0൰ and its blocked-based row index and column index 

are 0 and 3, respectively. Note that in Figure 2, we use two 
data value arrays rather than a single array in Figure 1. The 
reason is that for a block size with the height larger than 1, 
we put different rows in different data value arrays such that 
both the row index and column index can be used directly to 
index the data in each of the value arrays.Such data 
arrangement is also helpful for contiguous memory accesses. 
The overhead of the BCOO format, which is shared among 
all block-based formats, is the zeros in the data value array 
when a non-zero block contains zeros. 

 

 

 
 

 

Figure 3.The BCCOO format of matrix A with the block size of 
2x2. 

Our key extension to the COO format is to use a bit flag 
array to compress the row index array in a lossless manner. 
The bit flag array can be viewed simply as the result of a 
difference function being applied to the row index array. For 
a difference value larger than 1, we replace it with multiple 
1s. Then, we flip 1s and 0s such that a bit value of ‘0’ in the 
bit flag array represents a row stop, i.e., the corresponding 
value is the last non-zero in a row. A bit value of ‘1’ 
represents that it is not the last non-zero in a row. The 
reason for such representation is that when we compute the 
partial sums for dot-product result, using the value ‘0’ 
eliminates the condition check on the next non-zero for the 
end of a row (see Section 3.2). As our bit flag array provides 
lossless compression on the row index array, the row index 
information can be reconstructed from the bit flag array by 
accumulating the number of row stops. We refer to this 
format as blocked compressed COO (BCCOO). For matrix 
A in Eq. 1, the BCCOO format is shown in Figure 3 with 
the block size of 2x2. 

Compared to the BCOO format shown in Figure 2, the 
column index array and the data value arrays remain the 
same. The row index array becomes a bit vector of 5 bits. 
Assuming that integers are used for row indices, a 
compression ratio of 32 is achieved for the row index array. 

In our implementation, in order to remove the control flow 
to check the end of the bit flag array, we pad it with bit ‘1’ 
such that the length of the bit flag array is a multiple of the 
working set (i.e., number of non-zero blocks to be processed) 
of a workgroup. 

Similar to row-index arrays, we can also try to reduce data 
transmission required for column index arrays using  
difference functions. In our approach, we first apply a 
segmented difference function on a column index array with 
each segment being the working set of each thread. This 
way, there is no inter-thread dependency when 
reconstructing the column indices. The resulting difference 
array is stored using the short data type instead of the 
regular integer type. If a difference value is beyond the 
range of a signed short, we replace it with a fixed value -1, 
which means that the original column index array needs to 
be accessed for this particular index. 

     
(a)

                                            (b) 

Bit Flag ൌ ሾ0 0 0 1 0ሿ 

Value ൌ ൬
ሾܽ 0 0 0 ܾ ܿ ݃ ݄			݅			݆ሿ
ሾ݀ ݁ ݇ ݈ ݂ 0 ݉ ሿ݌		݋		݊

൰ 

Col_index ൌ ሾ1 0 3 2 3ሿ   (uncompressed) 

B ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 ܽ 0
0 0 ݀ ݁
0 0 0 0
݇ ݈ 0 0
0 0 ܾ ܿ
0 0 ݂ 0
݃ ݄ ݅ ݆
݉ ݊ ݋ ے݌

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Bit	Flag ൌ ሾ1		0		1		1		0ሿ 

Col_index ൌ ሾ1		3		0		2		3ሿ 

Value ൌ ൬
ሾܽ		0		ܾ		ܿ		0		0	݃			݄			݅ ݆ሿ
ሾ݀		݁		݂		0		݇		݈		݉		݊		݋ ሿ݌

൰ 

Row_index ൌ ሾ0		0		1		1		1ሿ 

Col_index ൌ ሾ1		3		0		2		3ሿ 

Value ൌ ൬
ሾܽ		0		ܾ		ܿ		0		0		݃		݄			݅ ݆ሿ
ሾ݀		݁		݂		0		݇		݈		݉		݊		݋ ሿ݌

൰ 

Fig. 4. The BCCOO format of matrix A with the block size of 2×2.

Our key extension to the BCOO format is to use a bit flag array to compress the
row index array. We first calculate the difference value of each pair of the adjacent
elements in the row index array. If the difference value is not greater than 1, we set
the corresponding bit in the bit flag array to the difference value. If the difference value
is greater than 1, we set a corresponding number of 1s in the bit flag array. Then, we
flip the bits of 1s and 0s in the bit flag array, such that a bit value of ’0’ represents a
row stop, namely, the corresponding block is the last non-zero block in the row. A bit
value of ’1’ represents that the corresponding block is not the last non-zero block in a
row. When calculating the partial sums, this representation can eliminate the row stop
check for each non-zero block (see Section 3.2 for details). The row index information
can be reconstructed from the bit flag array by accumulating the number of row stops.
Thus, the row index array is compressed in a lossless manner. We refer to this format
as blocked compressed COO (BCCOO). For matrix A in Figure 1, the BCCOO format
with the block size of 2×2 is shown in Figure 4.

Compared with the BCOO format shown in Figure 3, the column index array and the
data value arrays remain the same. The row index array becomes a bit vector of 5 bits.
Assuming that integers are used for row indices of BCOO format, BCCOO achieves a
compression ratio of 32 for the row index array. In order to remove the control flow to
check the end of the bit flag array, we pad it with bit ’1’, such that the length of the bit
flag array is a multiple the number non-zero blocks processed by a workgroup.

Similar to row-index arrays, we also try to reduce the data transmission overhead
for the column index arrays using difference functions. Firstly, we logically partition
the column index array into multiple segments, each of which is corresponding to the
working set (i.e., the total non-zero blocks to be processed) of a thread. Then, we use
a difference function on each segment of the column index array. In this way, there
is no inter-thread dependency when reconstructing the column indices. The resulting
difference value array is stored using the short data type instead of the regular integer
type. If a difference value is beyond the range of a signed short, we replace it with a
fixed value ’-1’, which means that the original column index array needs to be accessed
for this particular index.

 

way, there is no inter-thread dependency when reconstructing the column indices. The resulting 

difference array is stored using the short data type instead of the regular integer type. If a difference 

value is beyond the range of a signed short, we replace it with a fixed value -1, which means that the 

original column index array needs to be accessed for this particular index. 

 

B ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 ܽ 0
0 0 ݀ ݁
0 0 0 0
݇ ݈ 0 0
0 0 ܾ ܿ
0 0 ݂ 0
݃ ݄ ݅ ݆
݉ ݊ ݋ ے݌

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

       

           (a)                                   (b) 

 

 

 

Bit Flag ൌ ሾ0 0 0 1		0ሿ 

Value ൌ ൬
ሾܽ 0 0 0 	ܾ		ܿ		݃			݄			݅			݆ሿ
ሾ݀ ݁ ݇ ݈ ሿ݌		݋		݊		݉		0		݂	

൰ 

Col_index ൌ ሾ1		0		3		2		3ሿ   (uncompressed)

(a) The vertically sliced and
rearranged matrix of matrix A.

 

way, there is no inter-thread dependency when reconstructing the column indices. The resulting 

difference array is stored using the short data type instead of the regular integer type. If a difference 

value is beyond the range of a signed short, we replace it with a fixed value -1, which means that the 

original column index array needs to be accessed for this particular index. 

 

B ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 ܽ 0
0 0 ݀ ݁
0 0 0 0
݇ ݈ 0 0
0 0 ܾ ܿ
0 0 ݂ 0
݃ ݄ ݅ ݆
݉ ݊ ݋ ے݌

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

   

           (a)                                   (b) 

 

 

 

Bit	Flag ൌ ሾ0 0 0 1 0ሿ 

Value ൌ ൬
ሾܽ 0 0 0 ܾ ܿ ݃ ݄ ݅ ݆ሿ
ሾ݀ ݁ ݇ ݈ ݂ 0 ݉ ݊ ݋ ሿ݌

൰ 

Col_index ൌ ሾ1		0		3		2		3ሿ   (uncompressed)

(b) The bit flag, column index, and data value
arrays.

Fig. 5. The BCCOO+ format of matrix A in Figure 1.
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2.3. BCCOO+ Format
We also propose an extension to our BCCOO format to improve the locality of the
accesses to the multiplied vector, referred to as the BCCOO+ format. In this format,
we first partition a sparse matrix into vertical slices, and then align the slices in a
top-down manner. Next, we apply the BCCOO format on the vertically-sliced and re-
arranged matrix. However, the column index array is generated based on the block
coordinates in the original matrix, rather than the transformed matrix. This is be-
cause we need the original column indices to locate the corresponding elements in the
multiplied vector for dot-product operations. For matrix A in Figure 1, the vertically-
sliced and rearranged matrix becomes matrix B in Figure 5(a), in which the number
of slices is 2 and the slice width is 4. The BCCOO+ format of A is shown in Figure 5(b)
with the block size of 2×2. As shown in Figure 5, the bit flag array encodes that there
is only one non-zero block in row 0, row 1, and row 2, and two non-zero blocks in row
3. The column indices of these blocks, however, are determined from matrix A rather

than matrix B. Taking the 2×2 block
(
g h
m n

)
as an example, its column index value

indicates that it resides at column 2 in matrix A.
The benefit of BCCOO+ format can be illustrated by the matrix-vector multiplication

between matrix A and vector ~y, namely, A*~y. Different rows in the same vertical slice
use the same segment of ~y to compute the dot-product. Thus, the temporal locality
of vector ~y is improved by BCCOO+. However, since the BCCOO+ format breaks the
original matrix into slices, the intermediate results of each slice need to be combined
to generate the final results. For matrix A in Figure 1, the computation of A*~y based
on the BCCOO+ format is shown in Figure 6. We can see that it is necessary to use
a temporary buffer to store the intermediate results, and invoke an additional kernel
to combine them. Suppose the original matrix is divided into s slices and the length of
~y is l. The size of the temporary buffer is calculated by s ∗ l ∗ sizeof(datatype). Extra
memory overhead hurts the performance. Thus, the BCCOO+ format is not always
preferred over the BCCOO format. We resort to auto-tuning to determine either the
BCCOO or BCCOO+ format should be used.

 

 

Figure 4. The BCCOO+ format of matrix A in Eq. 1. (a) The 
vertically sliced and rearranged matrix of matrix A. (b) The bit 
flag array, the column index array, and the data value arrays. 

2.3 BCCOO+ Format 
We also propose an extension to our BCCOO format to 
improve the locality of the accesses to the multiplied vector, 
referred to as the BCCOO+ format. In this format, we first 
partition a sparse matrix into vertical slices and then align 
the slices in a top-down manner. Then, we apply the 
BCCOO format on the vertically sliced and rearranged 
matrix with an exception on column indices. The column 
index array is generatedbased on the block coordinates in 
the original matrix rather than the transformed matrix as we 
need original column indices to locate the corresponding 
elements in the multiplied vector for dot-product operations. 
For matrix A in Eq. 1, the vertically sliced and rearranged 
matrix becomes matrix B in Figure4a if the number of slice 
is 2 and the slice width is 4. The BCCOO+ format of A is 
shown in Figure 4b when the block size 2x2 is used. 
As shown in Figure 4, the bit flag array encodes that there is 
only one non-zero block in row 0, row 1, and row 2. Row 3, 
in contrast, contains 2 non-zero blocks. The column indices 
of these blocks, however, are determined from matrix A 
rather than matrix B. Taking the 2x2 block ቀ݃ ℎ

݉ ݊ቁ as an 
example, it resides at column 2 in matrix A,which is why its 
column index value is 2 as shown in Figure 4b. 
The benefit of BCCOO+ format can be illustrated with 
matrix-vector multiplication between matrix A and vector y, 
i.e., A*⃗ݕ. Different rows in the same vertical slice, e.g., slice 
0, will all use y[0]~y[3]. Similarly, all the rows in slice 1 
will use y[4]~y[7] to compute the dot-product. As the block 
ቀ݃ ℎ
݉ ݊ቁ is in slice 1, it needs to use y[4]~y[7], with the 

block size of 2x2, its column index of 2 provides the 
necessary information for indexing y[4] and y[5] from the 
vector ⃗ݕ. 

 
 
Figure 5.Matrix-vector multiplication as a sum of the products 
between its vertical slices and the corresponding vector 
segments. 

Since the BCCOO+ format breaks the original matrix into 
slices, after performing the matrix-vector multiplication on 
each slice, the intermediate results need to be combined to 
generate the final results. Using our running example of 
matrix A in Eq. 1, the derivation of A*⃗ݕis shown in Figure 
5.Therefore, when using the BCCOO+ format, it is 

necessary to use a temporary buffer to store the intermediate 
results and to invoke an additional kernel to combine them. 
Depending on the number of slices, the size of the 
temporary buffer can be large, thereby hurting the 
performance. As a result, the BCCOO+ format is not always 
preferred over the BCCOO format and we resort to auto-
tuning to determine either the BCCOO or BCCOO+ format 
should be used.  
2.4 Auxiliary Information for SpMV 
To facilitate the computation of SpMV, the following 
information is computed and stored along with the 
BCCOO/BCCOO+ format. First, based on the number of 
non-zeros that each thread will process, we compute the 
location of the first result generated by each thread, i.e., the 
row index that the result belongs to. Usingmatrix C in Eq. 2 
as an example, in which each element is a blockof data. To 
simplify the discussion, we assume the block size as nx1. As 
discussed in Section 2.2, for a block size with the height 
larger than 1, each row will be stored in a separate value 
array. The BCCOO format of matrix C is shown in Figure 
6a. As there are 16 non-zero data blocks, assuming each 
thread will process 4 non-zero blocks, we will compute the 
row index that the first result generated by each thread 
belongs to. Such information can be computed with a scan 
operation on the bitwise inverse of the bit flag array in the 
BCCOO format. In this example, thread 0 processes the first 
4 non-zero data blocks A’, B’, C’, and D’ and its first 
computation result, i.e.,A’*y’, is part of the final result for 
the dot-product between row 0 and the multiplied vector. So, 
the result entry is set to 0. Similarly, thread 1 processes the 
next four non-zero blocks E’, F’, G’, and H’. As block E’ 
still belongs to row 0, the entry for the first result of thread 1 
is set as 0.  
 

 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 

				Bit	Flag = [1		1		1		1		0		1		0		1		1		0		1		1		1		1		1		0]	

								Value = 	[′ܲ		′ܱ		′ܰ		′ܯ		′ܮ		′ܭ		′ܬ		′ܫ		′ܪ		′ܩ		′ܨ		′ܧ		′ܦ		′ܥ		′ܤ		ᇱܣ]
Col_index = [0		2		4		6		7		3		6		1		3		5		1		2		3		5		6		7]   (uncompressed)	

C = ൦

′ܣ 0 ′ܤ 0 ′ܥ 0 ′ܦ ′ܧ
0 0 0 ′ܨ 0 0 ′ܩ 0
0 ′ܪ 0 ′ܫ 0 ′ܬ 0 0
0 ′ܭ ′ܮ ′ܯ 0 ܰ′ ܱ′ ܲ′

൪ 

A ∗ ݕ⃗ = ቎
0 0
0 0

ܽ 0
݀ ݁

0 0
݇ ݈

0 0
0 0

቏ ∗

⎣
⎢
⎢
⎡
[0]ݕ
[1]ݕ
[2]ݕ
⎦[3]ݕ

⎥
⎥
⎤
+ ൦

0 0
0 0

ܾ ܿ
݂ 0

݃ ℎ
݉ ݊

݅ ݆
݋ ݌

൪ ∗

⎣
⎢
⎢
⎡
[4]ݕ
[5]ݕ
[6]ݕ
⎦[7]ݕ

⎥
⎥
⎤
 

Bit	Flag = [1		1		1		1		0		1		0		1		1		0		1		1		1		1		1		0]	
	

	Result	Entry:			0																0																2																3							

Fig. 6. Matrix-vector multiplication as a sum of the products between its vertical slices and the correspond-
ing vector segments.

2.4. Auxiliary Information for SpMV
To facilitate the computation of SpMV, the following information is computed and s-
tored along with the BCCOO/BCCOO+ format. First, based on the number of non-zeros
that each thread will process, we compute the location of the first result generated by
each thread, namely, the row index that the result belongs to. We use matrix C in Fig-
ure 7(a) as an example, in which each element represents a data block. To simplify the
discussion, we assume the block size is n×1. As discussed in Section 2.2, for a block size
with the height larger than 1, each row will be stored in a separate value array. The
BCCOO format of matrix C is shown in Figure 7(b). Assuming each thread processes
4 non-zero blocks, we will compute the row index of the first result generated by each
thread. Such information can be computed by a scan operation on the bitwise inverse
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of the bit flag array in the BCCOO format. In this example, thread 0 processes the first
4 non-zero data blocks A′, B′, C ′, and D′. The first computation result, namely, A′*y[0],
is part of the final result for the dot-product between row 0 and the multiplied vector.
Thus, the result entry for thread 0 is set to 0. Similarly, thread 1 processes the next
four non-zero blocks E′, F ′, G′, and H ′. As block E′ still belongs to row 0, the result
entry for thread 1 is also set to 0.

 

 

Figure 4. The BCCOO+ format of matrix A in Eq. 1. (a) The 
vertically sliced and rearranged matrix of matrix A. (b) The bit 
flag array, the column index array, and the data value arrays. 

2.3 BCCOO+ Format 
We also propose an extension to our BCCOO format to 
improve the locality of the accesses to the multiplied vector, 
referred to as the BCCOO+ format. In this format, we first 
partition a sparse matrix into vertical slices and then align 
the slices in a top-down manner. Then, we apply the 
BCCOO format on the vertically sliced and rearranged 
matrix with an exception on column indices. The column 
index array is generatedbased on the block coordinates in 
the original matrix rather than the transformed matrix as we 
need original column indices to locate the corresponding 
elements in the multiplied vector for dot-product operations. 
For matrix A in Eq. 1, the vertically sliced and rearranged 
matrix becomes matrix B in Figure4a if the number of slice 
is 2 and the slice width is 4. The BCCOO+ format of A is 
shown in Figure 4b when the block size 2x2 is used. 
As shown in Figure 4, the bit flag array encodes that there is 
only one non-zero block in row 0, row 1, and row 2. Row 3, 
in contrast, contains 2 non-zero blocks. The column indices 
of these blocks, however, are determined from matrix A 

rather than matrix B. Taking the 2x2 block ቀ݃ ݄
݉ ݊

ቁ as an 

example, it resides at column 2 in matrix A,which is why its 
column index value is 2 as shown in Figure 4b. 

The benefit of BCCOO+ format can be illustrated with 
matrix-vector multiplication between matrix A and vector y, 
i.e., A*ݕԦ. Different rows in the same vertical slice, e.g., slice 
0, will all use y[0]~y[3]. Similarly, all the rows in slice 1 
will use y[4]~y[7] to compute the dot-product. As the block 

ቀ݃ ݄
݉ ݊

ቁ is in slice 1, it needs to use y[4]~y[7], with the 

block size of 2x2, its column index of 2 provides the 
necessary information for indexing y[4] and y[5] from the 
vector ݕԦ. 

 
 
Figure 5.Matrix-vector multiplication as a sum of the products 
between its vertical slices and the corresponding vector 
segments. 

Since the BCCOO+ format breaks the original matrix into 
slices, after performing the matrix-vector multiplication on 
each slice, the intermediate results need to be combined to 
generate the final results. Using our running example of 
matrix A in Eq. 1, the derivation of A*ݕԦis shown in Figure 
5.Therefore, when using the BCCOO+ format, it is 

necessary to use a temporary buffer to store the intermediate 
results and to invoke an additional kernel to combine them. 
Depending on the number of slices, the size of the 
temporary buffer can be large, thereby hurting the 
performance. As a result, the BCCOO+ format is not always 
preferred over the BCCOO format and we resort to auto-
tuning to determine either the BCCOO or BCCOO+ format 
should be used.  

2.4 Auxiliary Information for SpMV 
To facilitate the computation of SpMV, the following 
information is computed and stored along with the 
BCCOO/BCCOO+ format. First, based on the number of 
non-zeros that each thread will process, we compute the 
location of the first result generated by each thread, i.e., the 
row index that the result belongs to. Usingmatrix C in Eq. 2 
as an example, in which each element is a blockof data. To 
simplify the discussion, we assume the block size as nx1. As 
discussed in Section 2.2, for a block size with the height 
larger than 1, each row will be stored in a separate value 
array. The BCCOO format of matrix C is shown in Figure 
6a. As there are 16 non-zero data blocks, assuming each 
thread will process 4 non-zero blocks, we will compute the 
row index that the first result generated by each thread 
belongs to. Such information can be computed with a scan 
operation on the bitwise inverse of the bit flag array in the 
BCCOO format. In this example, thread 0 processes the first 
4 non-zero data blocks A’, B’, C’, and D’ and its first 
computation result, i.e.,A’*y’, is part of the final result for 
the dot-product between row 0 and the multiplied vector. So, 
the result entry is set to 0. Similarly, thread 1 processes the 
next four non-zero blocks E’, F’, G’, and H’. As block E’ 
still belongs to row 0, the entry for the first result of thread 1 
is set as 0.  

 

 
 

 
 

 
 
 
 

 
 
 
 
 
 
 

Bit Flag ൌ ሾ1 1 1 1 0 1 0		1		1		0		1		1		1		1		1 0ሿ

Value ൌ ሾܣᇱ ′ܤ ′ܥ ′ܦ ′ܮ		′ܭ		′ܬ		′ܫ		′ܪ		′ܩ		′ܨ		′ܧ ′ܯ ܰ′ ܱ′ ܲ′ሿ

Col_index ൌ ሾ0 2 4 6 7 3 6		1		3		5		1		2		3		5		6 7ሿ   (uncompressed)

C ൌ ൦

′ܣ 0 ′ܤ 0 ′ܥ 0 ′ܦ ′ܧ
0 0 0 ′ܨ 0 0 ′ܩ 0
0 ′ܪ 0 ′ܫ 0 ′ܬ 0 0
0 ′ܭ ′ܮ ′ܯ 0 ܰ′ ܱ′ ܲ′

൪ 

ܣ ∗ Ԧݕ ൌ ቎

0 0
0 0

ܽ 0
݀ ݁

0 0
݇ ݈

0 0
0 0

቏ ∗

ۏ
ێ
ێ
ۍ
ሾ0ሿݕ
ሾ1ሿݕ
ሾ2ሿݕ
ےሾ3ሿݕ

ۑ
ۑ
ې
൅ ൦

0 0
0 0

ܾ ܿ
݂ 0

݃ ݄
݉ ݊

݅ ݆
݋ ݌

൪ ∗

ۏ
ێ
ێ
ۍ
ሾ4ሿݕ
ሾ5ሿݕ
ሾ6ሿݕ
ےሾ7ሿݕ

ۑ
ۑ
ې

Bit Flag ൌ ሾ1 1 1 1 0 1		0		1		1		0		1		1		1		1 1 0ሿ
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need original column indices to locate the corresponding 
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As shown in Figure 4, the bit flag array encodes that there is 
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in contrast, contains 2 non-zero blocks. The column indices 
of these blocks, however, are determined from matrix A 
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example, it resides at column 2 in matrix A,which is why its 
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The benefit of BCCOO+ format can be illustrated with 
matrix-vector multiplication between matrix A and vector y, 
i.e., A*ݕԦ. Different rows in the same vertical slice, e.g., slice 
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Since the BCCOO+ format breaks the original matrix into 
slices, after performing the matrix-vector multiplication on 
each slice, the intermediate results need to be combined to 
generate the final results. Using our running example of 
matrix A in Eq. 1, the derivation of A*ݕԦis shown in Figure 
5.Therefore, when using the BCCOO+ format, it is 

necessary to use a temporary buffer to store the intermediate 
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Depending on the number of slices, the size of the 
temporary buffer can be large, thereby hurting the 
performance. As a result, the BCCOO+ format is not always 
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should be used.  
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(b) The BCCOO format of Matrix C.
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(c) The location of the first result generated by each thread. Assume there
are four threads and each thread processes four non-zero blocks.

Fig. 7. Auxiliary information for SpMV.

3. EFFICIENT MATRIX-BASED SEGMENTED SCAN/SUM FOR SPMV
For a sparse matrix stored in our BCCOO/BCCOO+ format, SpMV can be implement-
ed in three logical steps: (1) read the data value arrays and multiply them with the
corresponding vector values indexed by the Col index array; (2) perform a customized
matrix-based segmented scan/sum using the bit flag array; (3) combine the partial re-
sults, and write back the final results to global memory using the result entry array.
In our proposed scheme, all these three steps are implemented in a single kernel so as
to minimize the kernel invocation overhead.

3.1. Segmented Scans
The segmented scan primitive scans multiple data segments that are stored togeth-
er. A start flag array is typically used to identify the first element of a segment. We
show an example of the inclusive segmented scan in Figure 8. Its start flag array is
generated from the bit flag array of the BCCOO format in Figure 7. The output of
the inclusive segment scan is the Result array in Figure 8. Note that for SpMV, the
complete segmented scan results are not necessary. Actually, we only need the last
sum of each segment, which is marked with underscores in the Result array. Thus,
a more lightweight segmented sum can be used for SpMV. However, considering that
a warp is the minimum scheduling unit for GPUs, segmented sum has almost equal
computation to segmented scan when there are few non-zeros in each row. Besides, for
segmented sum, it has to check whether the corresponding bit for each non-zero value
is a row stop or not, which brings overhead. Thus, we consider both segmented scan
and segmented sum to implement SpMV.
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Figure 6.(a) The BCCOO format of Matrix C in Eq.2. (b) The 
example of compute the location of the first result generated by 
each thread, assuming that there are four threads and each 
thread processes four non-zero blocks. 

Second, we perform a quick check to see whether we can 
skip the parallel segmented scan operation at the workgroup 
level. It is the case when each thread in a workgroup 
encounters a row stop, which results in the segment size 
being 1 for the parallel segmented scan. 

3. An Efficient Matrix-based Segmented Sum/Scan 
for SpMV 
With a sparse matrix stored in our BCCOO/BCCOO+ 
format, SpMV can be implemented in three logical steps: (1) 
read the data value arrays and multiply them with the 
corresponding vector values indexed by the Col_index array; 
(2) perform a segmented scan using the bit flag array from 
our BCCOO/BCCOO+ format; (3) write back the results to 
global memory. In our proposed scheme, all these three 
steps are implemented in a single kernel so as to minimize 
the kernel invocation overhead. 

3.1 Segmented Scans  
The segmented scan primitive scans multiple data segments 
that are stored together. A start flag array is typically used to 
identify the first element of a segment. We show an example 
of the inclusive segmented scan in Figure 7. Its start flag 
array is generated from the bit-flag array of the BCCOO 
format in Figure 6.The output of the inclusive segment scan 
is the ‘Result’ array in Figure 7. Note that for SpMV, the 
complete segmented scan results are not necessary. Instead, 
the last sum of each segment is sufficient, as marked with 
underscores in the ‘Result’ array. In other words, for SpMV, 
the segmented reduction/sum primitive can be used rather 
than the segmented scan primitive. 

 
Figure 7. An inclusive segmented scan with the start flags 

generated from the bit flag array in Figure 6(a). 

 

Figure 8. Even workload distribution: each workgroup/thread 
block works on a workgroup-level tile; each thread works on a 
thread-level tile of non-zero blocks. 

Twomain approacheshave been proposed to parallelize the 
segmented scan primitive on GPUs. One is a tree-based 
approach[5], which builds a binary tree through different 
processing stages. The tree-based approach suffers from the 
load imbalance problem as different numbers of threads will 
be idle in different processing stages. Furthermore, it 
requires workgroup-level synchronization between stages as 
discussed in [8]. The other is a matrix-based approach, 
which is proposed to improve memory efficiency and 
overcome the load imbalance problem. Our proposed 
BCCOO/BCCOO+ format suits better with the matrix-based 
segmented scan and we further customize it for SpMV.  

3.2 A Customized Matrix-based Segmented Sum/Scan 
for SpMV 
3.2.1 Per-thread and per-workgroup working sets 
In our segmented sum/scan approach for SpMV, the input 
non-zero blocks as well as the corresponding bit-flag array 
and the column index array are divided evenly 
amongworkgroups. The working set of each workgroup is 
referred to as a workgroup-level tile, which in turn will be 
divided evenly among the threads within the workgroup. 
The working set of a thread is referred to as a thread-level 
tile, as shown in Figure 8. The benefits of using a single 
thread to process multiple consecutive non-zero blocks (e.g., 
16) are two-folds. First, a single/few load(s) from the bit 
flag array (e.g., loading a single short type of data) will be 
sufficient to provide all the bit flag information. Compared 
to the previous approaches, which load the row index 
information for every non-zero, significantbandwidth will 
be saved. Second, each thread will perform the segmented 
scan in a sequential manner and may use a segmented sum 
instead of a segmented scan, which has fewer intermediate 
results to keep. Also, note that the bit flags in our 
BCCOO/BCCOO+ format are different from the start flags 
that are used in typical segmented scans as shown in Figure 
7. Although the start flags can be derived from the bit flags, 
we choose to use the bit flags since it is straightforward to 
tell whether a segment ends from the bit flags. If the start 
flags were used, one needs to search for the next start to find 
the end of the current segment. It would be more complex 
when the non-zeros in a row span across multiple thread-
level or workgroup-level tiles. 
3.2.2 Computing per-thread and per-workgroup partial 
sums 
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Fig. 8. An inclusive segmented scan with the start flags generated from the bit flag array in Figure 7(b).

Two main approaches have been proposed to parallelize the segmented scan primi-
tive on GPUs. One is a tree-based approach [Blelloch 1989], which builds a binary tree
through different processing stages. The tree-based approach suffers from the load im-
balance problem. Furthermore, it requires workgroup-level synchronization between
stages as discussed in [Dotsenko et al. 2008]. The other is a matrix-based approach
[Dotsenko et al. 2008], which is proposed to improve memory efficiency and overcome
the load imbalance problem. Our proposed BCCOO/BCCOO+ format suits better with
the matrix-based segmented scan and we further customize it for SpMV.

3.2. Customized Matrix-based Segmented Scan/Sum for SpMV
3.2.1. Per-thread and per-workgroup working sets. In our segmented sum/scan approach

for SpMV, the non-zero blocks, the bit flag array, and the column index array are di-
vided evenly among workgroups. The working set of each workgroup is referred to as
a workgroup-level tile, which in turn will be divided evenly among the threads with-
in the workgroup. The working set of a thread is referred to as a thread-level tile, as
shown in Figure 9. For a thread-level tile, a single/few load(s) from the bit flag array
(such as loading a single short type of data) will be sufficient to provide all the bit
flag information. Compared with the previous approaches, which load the row index
information for every non-zero, significant bandwidth will be saved.
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level. It is the case when each thread in a workgroup 
encounters a row stop, which results in the segment size 
being 1 for the parallel segmented scan. 
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the last sum of each segment is sufficient, as marked with 
underscores in the ‘Result’ array. In other words, for SpMV, 
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information for every non-zero, significantbandwidth will 
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tell whether a segment ends from the bit flags. If the start 
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Fig. 9. Even workload distribution: each workgroup/thread block works on a workgroup-level tile; each
thread works on a thread-level tile of non-zero blocks.

Since a thread-level tile may contain row stops, each thread will write its last partial
sum into a temporary array, called last partial sums. Then, a parallel segmented scan
[Sengupta et al. 2007] will be performed on this last partial sums array. The start
flags of the last partial sums array are generated by each thread. We further perform
a quick check to see whether we can skip the parallel segmented scan operation at
the workgroup level. It is the case when each thread in a workgroup encounters a
row stop, which results in the segment size being 1 for the parallel segmented scan.
When the non-zeros in a row span multiple workgroups/thread blocks, we leverage
the recently proposed adjacent synchronization [Yan et al. 2013] for inter-workgroup
communication, which eliminates global synchronization.

3.2.2. Computing the partial sums and the final results. We design three strategies to com-
pute the intra-workgroup partial sums and get the final results. The first and the
second strategies are designed for GPUs, and the third one is proposed especially for
Inte MIC.
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Strategy (1): In the first strategy, each thread has an array, called
intermediate sums, to keep all the intermediate sums of its thread-level tile. This
intermediate sums array can be stored in shared memory (also called local memory
in OpenCL), registers, or split between shared memory and registers. This strategy
works well if most rows in a sparse matrix have very few non-zeros. For the matrix C
in Figure 7(a), the computation of the intra-workgroup partial sums is illustrated in
Figure 10, in which we assume that each thread-level tile contains 4 non-zero blocks
and there are 4 threads in a workgroup. Each thread performs a sequential segmented
scan, and stores the results in its intermediate sums array. Each thread uses the last
partial sum to update the corresponding entry of the last partial sums array, which
locates in the shared memory and can be accessed by all the threads in a workgroup. If
the last element of a thread-level tile is a row stop, the last partial sum of this thread
is 0, as shown by thread 3 in Figure 10.
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Fig. 10. Computing segmented scans: strategy (1), which uses per-thread buffers, namely, the
intermediate sums arrays to store the intermediate sum results.

Memory coalescing [Ueng et al. 2008] is the key factor to achieve high bandwidth
when accessing the data value array. We view the data value array as a 2-dimension
array with the width as the thread-level tile size. Then, with a transpose operation,
the threads in a warp will access the data in a row-by-row manner, thereby satisfying
the memory coalescing requirement. We do the same thing to the Col index array. The
transpose operation can be done either online or offline. With online approach, the
threads in a warp read one tile at a time in a coalesced manner and multiply with
the corresponding vector elements, then store the results in a shared memory buffer
still in the row-based manner. Later on, when performing the segmented scan, the
threads read the buffer in a column-based manner. If non-zeros in a row are close
to each other, online transpose may achieve better performance due to the improved
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locality for the multiplied vector. We use online transpose for our first strategy. For
offline transpose, the 2-dimension data value array is previously transposed during
the format generation phase. Different from online transpose, offline transpose does
not require a shared memory buffer for transposition. We will use offline transpose in
strategy (2).

ALGORITHM 1: Combining the partial sums for strategy (1)
Input: res addr: the first result location of the thread. i: the local thread id.

pre partial sum: the last partial sum of the previous workgroups.
bit flag: the bit flag for the thread working set. work size: the thread working set size.

Output: results[ ]: the final results after combining the partial sums.
1 float tmp = 0.0;
2 for int n = 0; n < work size; n++ do
3 if Is the n-th bit of bit flag a row stop? then
4 if Is the first row stop in the current thread? then
5 if Is the first row stop in the current workgroup? then
6 tmp = intermediat sums[n] + last partial sums[i− 1] + pre partial sum;
7 else
8 tmp = intermediat sums[n] + last partial sums[i− 1];
9

10 else
11 tmp = intermediat sums[n];
12 results[res addr++] = tmp;
13

Next, we need to combine the results in the per-thread intermediate sums arrays,
the results in the per-workgroup last partial sums array, and also the results from
other workgroups to generate the final output of SpMV. ALGORITHM 1 illustrates
how to generate the final output for strategy (1). Each thread will go through its
intermediate sums array. For each element, it checks whether the corresponding bit
flag is a row stop (line 3). If not, it means the corresponding result has already been
incorporated into the sum of the segment. For a row stop, a thread further check-
s whether it is the first stop in its thread-level tile (line 4). If not, it means the
thread-level tile contains the complete segment and the corresponding result is the
final result (line 11). In the example shown in Figure 10, for thread 1, the entry in
its intermediate sums array containing (R5+R6) is such a case. If a row stop is the
first in a thread-level tile (such as the entry containing R4 for thread 1 in Figure 10),
there are two possibilities. One is that the segment spans multiple threads within a
workgroup (line 7-8). Then, the last partial sums array of the workgroup will be used
to retrieve the last partial sum of the previous threads. For example, the entry con-
taining (R0+R1+R2+R3) in the last partial sums array will be added to R4 of thread 1
in Figure 10. The other possibility is that the segment spans multiple threads across
workgroups (line 5-6). In this case, we also need to accumulate the last partial sum re-
sults of the previous workgroups. We resort to adjacent synchronization to avoid global
synchronization as discussed in Section 3.2.3. At last, the final results is written back
to global memory (line 12).

Strategy (2): In our second strategy, we allocate a result cache in shared memory
to only store the sum of each segment. This strategy works better for long segments
and also benefits from efficient memory writes, as we can store the result cache to
global memory in a coalesced way. With this strategy, the offline transpose is used to
ensure coalesced memory reads from the data value array and the Col index array.
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After performing the multiplication with vector elements, each thread carries out a
segmented sum sequentially on its thread-level tile, using the bit flag array as the
mask for the segments. All the segmented sums will be written to the result cache with
the help of the result entry information generated along with the BCCOO format.
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Fig. 11. Computing segmented sum: strategy (2), which uses a per-workgroup result cache to store seg-
mented sums. The dashed blocks mean that the intermediate sums are not stored.

Using the matrix C in Figure 7(a) as an example, strategy (2) is illustrated in Fig-
ure 11. We assume that each thread-level tile contains 4 non-zero blocks and there
are 4 threads in a workgroup. The result entry information shown in Figure 7 is used
for updating the result cache. For example, as shown in Figure 7, the result entry for
thread 1 and thread 2 is 0 and 2, respectively. Therefore, when thread 1 encounters
the first row stop, it uses its current sum R4 to update the entry 0 of the result cache.
When thread 1 encounters the second row stop, it uses the sum R5+R6 to update the
entry 1 of the result cache. In a sense, the result entry information partitions the re-
sult cache among different threads in a workgroup. When the number of row stops in
a workgroup-level tile is larger than the result cache size, the extra segmented sums
will be stored in the result array in global memory, which will be re-accessed later to
generate the final outputs.

The same as the first strategy, each thread also writes its last partial sum to the
last partial sums array. To generate the start flags for the last partial sums array, in ei-
ther strategy, each thread simply checks whether its bit flags contain a 0 (namely a row
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stop). If so, its last partial sum should be a start for a segment in the last partial sums
array. For the examples in Figure 10 and Figure 11, the start flags are [0, 1, 1, 1], since
all threads except thread 0 process a tile containing a row stop. After updating the
last partial sums array, all the threads in the workgroup perform a parallel segment-
ed scan [Sengupta et al. 2007] on the last partial sums array using the start flags. In
our example in Figure 10 or Figure 11, this parallel scan can be skipped since all the
segment sizes are 1.

ALGORITHM 2: Combining the partial sums for strategy (2)
Input: res addr: the first result location of the thread.

pre partial sum: the last partial sum of the previous workgroups.
b res addr: the first result location of the current workgroup.
cache len: the length of the result cache[ ]. cache end: the number of the cached results.
workgroup size: the number of threads in a workgroup.

Output: results[ ]: the final results after combining the partial sums.
1 int i = local thread id;
2 if i == 0 then
3 result cache[0] += pre partial sum;
4

5 workgroup-level-barrier();
6 if i != 0 then
7 if Is there a row stop in the current thread? then
8 if res addr − b res addr < cache len then
9 result cache[res addr − b res addr] += last partial sums[i− 1];

10 else
11 results[res addr]+=last partial sums[i− 1];
12

13

14 while i < cache end do
15 results[i+ b res addr] = result cache[i] ; // Write back in a coalesced way.
16 i+=workgroup size;

ALGORITHM 2 illustrates how to generate the final output for strategy (2). In s-
trategy (2), there are no per-thread intermediate sum arrays. Instead, there is a per-
workgroup result cache. For thread 0, it updates the entry 0 of the result cache with
the last partial sum from the previous workgroup (line 2-4). To avoid data race at the
entry 0 of the result cache, a workgroup-level synchronization is used (line 5). Each
thread except thread 0 first checks whether there are row stops in its thread-level tile
(line 7). If so, it means that the thread has generated some partial sums corresponding
to the row stops. Each thread only needs to process the partial sum at the first row stop
(such as R4 in the result cache in Figure 11). For subsequent row stops in the thread,
the partial sums in the result cache are already the complete segment sums. Next,
each thread except thread 0 adds the last partial sum from the previous thread to the
partial sum at the first row stop, which is stored either in result cache (line 8-9) or
in global memory (line 10-11). For example, R0+R1+R2+R3 from the last partial sums
array is added to R4 in the result cache in Figure 11). After the result cache is updated,
it is written back to global memory in a memory-coalescing way (line 14-16).

Strategy (3): Intel MIC and GPUs have different hardware architectures and dif-
ferent performance optimization tricks. Thus, we propose the third strategy specifical-
ly for MIC, as illustrated in Figure 12. To achieve high throughput on MIC based on
OpenCL, two key points should be noticed. Firstly, the local memory in OpenCL, which
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is usually used as a high performance shared buffer, has no corresponding hardware
implementation in MIC. The data in local memory is actually put in the global memo-
ry of MIC, with extra software overhead. As illustrated in Figure 12, the intermediate
sums are not stored, and therefore the local memory consumption is avoided. All the
segmented sums will be written back to the global memory directly with the help of
the result entry information. Besides, the last partial sums array is also stored in the
global memory.
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Fig. 12. Computing segmented sum: strategy (3), proposed only for Intel MIC. The dashed blocks mean that
the intermediate sums are not stored.

Secondly, the 512-bit SIMD instruction in MIC should be fully utilized. To achieve
this, besides the offline transpose for the data value array used in strategy (2), we con-
duct another inner-block transpose for the BCCOO format. In Figure 12,A′T means the
transposed block of A′. After the inner-block transpose, each thread can execute both
the multiplication and addition operations in SpMV in a SIMD manner. The width
of the SIMD instruction is decided by the width of each block (after transposition).
When the width of each block is small, the potential performance of the 512-bit SIMD
instruction cannot be fully exploited. However, enlarging the width of each block will
bring more zero elements, which reduces the sparse matrix compression efficiency. To
solve this dilemma, we propose a method of workload coalescing. As shown in Fig-
ure 12, the workload of two threads in Figure 11 is coalesced to be done by one thread.
Take thread 0 in Figure 12 as an example, thread 0 processes two non-zero blocks (i.e.,
A′T and E′T ) simultaneously, and thus the width of SIMD is doubled. The number of
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threads, whose workload is coalesced to be done by one thread, is called bunch size in
the following content.

ALGORITHM 3: Combining the partial sums for strategy (3)
Input: bunch size: the bunch size. i: the local thread id.

res addr[ ]: the first result locations for all bunch size slices of the coalesced workload.
pre partial sum: the last partial sum of the previous workgroups.

Output: results[ ]: the final results after combining the partial sums.
1 int i = local thread id;
2 if i == 0 then
3 results[res addr[0]] += pre partial sum;
4

5 workgroup-level-barrier();
6 if i != 0 then
7 if Is there a row stop in the 0-th slice of the coalesced workload? then
8 results[res addr[0]] += last partial sums[i− 1][bunch size− 1];
9

10 for int n = 1; n < bunch size; n++ do
11 if Is there a row stop in the n-th slice of the coalesced workload? then
12 results[res addr[n]] += last partial sums[i][n− 1];
13

ALGORITHM 3 illustrates how to generate the final output for strategy (3). In strat-
egy (3), the intermediate results are written back to the global memory directly with-
out being cached. Recall that there are total bunch size slices of workload coalesced to
be done by one thread. For thread 0, it updates the entry 0 of the result cache with the
last partial sum from the previous workgroup (line 2-4). Each thread except thread 0
first checks whether there are row stops in its 0-th slice of the coalesced workload. If so,
the thread accumulates the last patrial sum (the partial sum of the (bunch size-1)-th
slice workload of the last thread) to the corresponding result entry in global memory
(line 7-8). For example, R0+R1+R2+R3 from the last partial sums array is added to
R4 in the global memory in Figure 12. Then, the current thread checks whether there
are row stops in the n-th slice workload of its own, where n∈[1, bunch size−1]. If so,
the current thread accumulates the partial sum of the (n-1)-th slice to the first result
location of the n-th slice (line 11-12).

3.2.3. Accumulating partial sums across workgroups. As discussed in Section 3.2.2, for seg-
ments spanning multiple workgroups, the partial sums should be accumulated across
the workgroups. The last workgroup, which contains the row stop, needs to accumulate
the partial sums of previous workgroups. Here, we make an implicit assumption that
the workgroup-level tiles are distributed to workgroups in order. In other words, work-
group 0 processes the first tile; workgroup 1 processes the second tile; etc. The current
GPUs dispatch workgroups in order. Therefore, we can directly use the workgroup ids
in the kernel. If a GPU dispatches workgroups out of order, workgroups can get such
logic workgroup ids from global memory using atomic fetch-and-add operations. This
approach incurs small performance overhead, less than 2% in our experiments. We use
a global memory array Grp sum to accumulate partial sums across workgroups. We
use another initialized Sync flag array, whose elements have one-to-one correspon-
dence to Grp sum elements, for synchronization. Workgroup 0 updates the first entry
Grp sum[0] with its last partial sum, and then updates the corresponding element in
the Sync flag array. For a subsequent workgroup with id X, if it does not contain a
row stop, it waits for the entry Sync flag[X-1] to be updated by workgroup (X-1), and
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then updates Grp sum[X] with the sum of its last partial sum and Grp sum[X-1]. If a
workgroup contains a row stop, it breaks these chained updates and directly updates
Grp sum[X] with its last partial sum. This approach is called adjacent synchronization
[Yan et al. 2013].

However, to use the approach of adjacent synchronization on some platforms (such
as AMD GPUs) with cache enabled by default, atomic primitives have to be used to
guarantee that each workgroup can access the latest values of Sync flag[X-1] and
Grp sum[X-1] once being updated by the previous workgroup. For single precision, we
use the atomic primitive atomic xchg. However, there is no corresponding atomic prim-
itives which directly support double precision. By enabling cl khr int64 base atomics,
we can use the 64-bit atomic primitive atom xchg which only supports the types of long
and ulong. Using the function as ulong(), we treat the values and variables of double
type as ulong type, which can then be used in atom xchg. So far, we can use the atomic
primitive on double-precision variables and values for adjacent synchronization with-
out losing precision.

4. AUTO-TUNING FRAMEWORK
As discussed in Sections 2 and 3, we propose BCCOO and BCCOO+ formats for sparse
matrices, and three new strategies to compute segmented sums/scans for SpMV. To
find the optimal solution for a sparse matrix, we build an offline auto-tuning frame-
work to select the format, the computing strategy, and their associated parameters.
Then, the OpenCL code is generated according to the selected parameters from this
auto-tuning framework. We also use this framework to exploit the texture cache for
the multiplied vector in single precision on GPUs. Another optimization is that we use
the ’unsigned short’ data type for the col index array if the width of a sparse matrix
is less than 65535. In this case, there is no need to further compress the col index ar-
ray using the approach discussed in Section 2.2. The parameters that this framework
explores for GPUs and MIC are listed in Table I and Table II respectively. Note that
when strategy (1) is used to compute the segmented scan, the thread-level tile size is
the size of the immediate sums array, which is the sum of the parameters, Reg size
and ShM size. Besides, the strategy (3), which is proposed specifically for Intel MIC,
includes bunch size as a tuning parameter.

As shown in Table I and Table II, there are many parameters to tune, which form a
relatively large search space. Although the framework mainly aims at iterative SpMV,
we try to minimize the overhead of offline auto-tuning using the following optimiza-
tions. First, we use GPUs to accelerate the translation from the COO format to the
BCCOO/BCCOO+ format. Second, we cache compiled kernels in a hash table so that
they can reused for different matrices. Third, we prune the search space using the
follow heuristics: (1) Since the memory footprint is highly dependent on block dimen-
sions, we only select the block dimensions with the top 4 minimum memory footprints;
(2) We always use the texture memory for the multiplied vector in single precision, and
always use offline transpose; (3) We reduce the searching range of the result cache size
for the second strategy; (4) We set the shared memory size as 0 for the per-thread inter-
mediate sums array for the first strategy; (5) We use the BCCOO+ format only when
the width of the sparse matrix is larger than the height; (6) We reduce the searching
range of the thread-level tile size according to the dimensions of the sparse matrix.
With these optimizations, our auto-tuning framework only runs 28 iterations of SpMV
on average for the 20 sparse matrices in our study (shown in Table III). The average
auto-tuning time is 3.6 seconds on average for the 20 sparse matrices on a machine
with an Intel(R) Xeon(R) E5-2660 @ 2.20GHz (only one core is used) and an NVIDIA
GTX680 GPU. Compared with the optimal results obtained from an exhaustive search
of the parameters listed in Table I, our auto-tuning results are identical to the optimal
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Table I. Tunable parameters of the auto-tuning framework on GPUs

 

 

in a memory coalesced way by all threads together in a 
workgroup. 
3.2.4 Accumulating partial sums across workgroups 
As discussed in Section 3.2.3, for segments spanning 
multiple workgroups, the last workgroup, which contains 
the row stop, needs to accumulate previous workgroups 
partial sums. Here, we make an implicit assumption that the 
workgroup-level tiles are distributed to workgroups in-order. 
In other words, workgroup 0 processes the first tile; 
workgroup 1 processesthe second tile; etc. Current GPUs 
dispatch workgroups in-order. Therefore, we can directly 
use the workgroup ids in the kernel. If a GPU dispatches 
workgroups out-of-order, workgroups can get such ‘logic’ 
workgroup ids from global memory using atomic fetch-and-
add operations. This approach incurs small performance 
overhead, less than 2% in our experiments. To accumulate 
partial sums across workgroups, we use a global memory 
array ‘Grp_sum’. The array is initialized to a special value 
(e.g., maximal floating-point number). This array is updated  
in a sequential manner. Workgroup 0 updates the first entry 
‘Grp_sum[0]’ with its last partial sum. For a subsequent 
workgroup with id X, if it does not contain a row stop, it 
waits for the entry ‘Grp_sum[X-1]’ to be changed from the 
initial value, i.e., updated by workgroup (X-1), and then 
updates ‘Grp_sum[X]’ with the sum of its last partial sum 
and ‘Grp_sum[X-1]’. If a workgroup contains a row stop, it 
breaks such chained updates and directly updates 
‘Grp_sum[X]’ with its last partial sum. This approach is 
called adjacent synchronization in[24]. 

4. Auto-Tuning Framework 
As discussed in Sections 2 and 3, we propose a new format 
BCCOO and its variant BCCOO+ for sparse matrices, and 
two new strategies tocomputesegmented sums/scans for 
SpMV. To find the optimal solution for a sparse matrix, we 
build an auto-tuning framework to select the format, the 
computing strategy, as well as their associated parameters. 
Then, the OpenCL code is generated according to the 
selected parameters from this auto-tuning framework.We 
also use this framework to exploit the texture cache for the 
multiplied vector. Another optimization is that we use the 
‘unsigned short’ data type for the col_index array if the 
width of a sparse matrix is less than 65535. In this case, 
there is no need to further compress the col_index array 
using the approach discussed in Section 2.2. The parameters 
that this framework explores are listed in Table 1. Note that 
when strategy 1 is used to compute the segmented scan, the 
thread-level tile size is the size of the immediate_sums array, 
which is the sum of the parameters,Reg_size and ShM_size. 
 
 
 
 
 
 

 
Table 1.Tunable parameters of the auto-tuning framework. 

 
Parameter Name Possible Values 
Matrix format BCCOO, BCCOO+ 
Col_index compress Yes, No 
Block width 1, 2, 4 
Block height 1, 2, 3, 4 
Data type for the bit flag array Unsigned char, unsigned 

short, unsigned int 
Vertical slice number 1, 2, 4, 8, 16, 32 
Transpose Offline, online 
Texture memory for multiplied vector Yes, No 
Workgroup size 64, 128, 256, 512 
Strategy 
1 

Registers for the per-thread 
intermediate sums array 
(Reg_size) 

0, 8, 16, 32 

Shared memory for the per-
thread intermediate sums array 
(ShM_size) 

0, 8, 16, 32 

Strategy 
2 

Thread-level tile size 8,16,24,32,40,64,96,128 
Result cache size (multiple of 
the workgroup size) 

1,2,3,4 

 
Table 2.Tunable parameters of the auto-tuning framework for 

MIC. 
 

Parameter Name Possible Values 
Matrix format BCCOO 
Col_index compress Yes, No 
Block width 1, 2, 4 
Block height 1, 2, 4 
Data type for the bit flag array Unsigned char, unsigned 

short, unsigned int 
Workgroup size 1,2,4,8,16,32 
Thread-level tile size 32~1024 
Threads bunch size 1,2,4 

 
As shown in Table 1, there are many parameters to tune, 
which form a relatively large search space for a sparse 
matrix on a particular hardware platform. In order to 
accelerate auto-tuning, we perform the following 
optimizations. First, we use GPUs to accelerate the 
translation from the COO format to the BCCOO/BCCOO+ 
format.Second, we cache compiled kernelsin a hash table so 
that they can reused for difference matrices. Third, we prune 
the search space using the follow heuristics: since the 
memory footprint is highly dependent on block dimensions, 
we only need to select the block dimensions corresponding 
to the 4smallest memory footprints. Fourth, we further 
reduce the search space by: always using the texture 
memory for the multiplied vector, always using offline 
transpose, limiting the result cache size to 1 and 2 for 
strategy 2, and setting the shared memory size as 0 for the 
per-thread intermediate sums array for strategy 1. With 
these optimizations, the average auto-tuning time is 12.8 
seconds among the 20 matrices in our study, running on a 
desktop machine with an Intel(R) Core2 Quad CPU Q9650 
@ 3.00GHzand an NVIDIA GTX680 GPU. Compared to 
the optimal results obtained from an exhaustive search of 

Table II. Tunable parameters of the auto-tuning framework on MIC

 

 

accumulates the partial sums of multiple threads for 
segments spanning multiple threads, it is added to the result 
cache entry (e.g., R0+R1+R2+R3 from the last_partial_sums 
array is added to R4 in the result cache in Figure 10). For 
thread 0, it updates result cache entry 0 with the last partial 
sum from the previous workgroup. To avoid data race at 
result cache entry 0, a workgroup-level synchronization is 
added after thread 0 processes the result cache entry 0. After 
the result cache is processed, it is written to global memory 
in a memory coalesced way by all threads together in a 
workgroup. 
3.2.4 Accumulating partial sums across workgroups 
As discussed in Section 3.2.3, for segments spanning 
multiple workgroups, the last workgroup, which contains 
the row stop, needs to accumulate previous workgroups 
partial sums. Here, we make an implicit assumption that the 
workgroup-level tiles are distributed to workgroups in-order. 
In other words, workgroup 0 processes the first tile; 
workgroup 1 processesthe second tile; etc. Current GPUs 
dispatch workgroups in-order. Therefore, we can directly 
use the workgroup ids in the kernel. If a GPU dispatches 
workgroups out-of-order, workgroups can get such ‘logic’ 
workgroup ids from global memory using atomic fetch-and-
add operations. This approach incurs small performance 
overhead, less than 2% in our experiments. To accumulate 
partial sums across workgroups, we use a global memory 
array ‘Grp_sum’. The array is initialized to a special value 
(e.g., maximal floating-point number). This array is updated  
in a sequential manner. Workgroup 0 updates the first entry 
‘Grp_sum[0]’ with its last partial sum. For a subsequent 
workgroup with id X, if it does not contain a row stop, it 
waits for the entry ‘Grp_sum[X-1]’ to be changed from the 
initial value, i.e., updated by workgroup (X-1), and then 
updates ‘Grp_sum[X]’ with the sum of its last partial sum 
and ‘Grp_sum[X-1]’. If a workgroup contains a row stop, it 
breaks such chained updates and directly updates 
‘Grp_sum[X]’ with its last partial sum. This approach is 
called adjacent synchronization in[24]. 

4. Auto-Tuning Framework 
As discussed in Sections 2 and 3, we propose a new format 
BCCOO and its variant BCCOO+ for sparse matrices, and 
two new strategies tocomputesegmented sums/scans for 
SpMV. To find the optimal solution for a sparse matrix, we 
build an auto-tuning framework to select the format, the 
computing strategy, as well as their associated parameters. 
Then, the OpenCL code is generated according to the 
selected parameters from this auto-tuning framework.We 
also use this framework to exploit the texture cache for the 
multiplied vector. Another optimization is that we use the 
‘unsigned short’ data type for the col_index array if the 
width of a sparse matrix is less than 65535. In this case, 
there is no need to further compress the col_index array 
using the approach discussed in Section 2.2. The parameters 
that this framework explores are listed in Table 1. Note that 
when strategy 1 is used to compute the segmented scan, the 

thread-level tile size is the size of the immediate_sums array, 
which is the sum of the parameters,Reg_size and ShM_size. 
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Parameter Name Possible Values 
Matrix format BCCOO, BCCOO+ 
Col_index compress Yes, No 
Block width 1, 2, 4 
Block height 1, 2, 3, 4 
Data type for the bit flag array Unsigned char, unsigned 

short, unsigned int 
Vertical slice number 1, 2, 4, 8, 16, 32 
Transpose Offline, online 
Texture memory for multiplied vector Yes, No 
Workgroup size 64, 128, 256, 512 
Strategy 
1 

Registers for the per-thread 
intermediate sums array 
(Reg_size) 

0, 8, 16, 32 

Shared memory for the per-
thread intermediate sums array 
(ShM_size) 

0, 8, 16, 32 

Strategy 
2 

Thread-level tile size 8,16,24,32,40,64,96,128 
Result cache size (multiple of 
the workgroup size) 

1,2,3,4 

 
 
 
 
 
 
 
 
 
 
Table 2.Tunable parameters of the auto-tuning framework for 

MIC. 
 

Parameter Name Possible Values 
Matrix format BCCOO 
Col_index compress Yes, No 
Block width 1, 2, 4 
Block height 1, 2, 4 
Data type for the bit flag array Unsigned char, unsigned 

short, unsigned int 
Workgroup size 1,2,4,8,16,32 
Thread-level tile size 32~1024 
Bunch size 1,2,4 

 
ones on NVIDIA GTX680 and AMD W8000 GPUs. On NVIDIA GTX480, however, the
optimal configurations show 10.5% better performance for the matrix Epidemiology,
which prefers no texture memory usage, and 11.1% better performance for the matrix
Circuit, which prefers online transpose. As we can expect, a finer grain parameter
selection may further improve the performance. In addition, we find that block width,
block height, thread-level tile size, and bunch size are the parameters that top affect the
performance among all the parameters.

5. EXPERIMENTAL METHODOLOGY
Our experiments have been performed on six different platforms - Nvidia GTX680,
Nvidia GTX480 GPU, Tesla K20, GeForce Titan X, AMD FirePro W8000 and Intel
MIC SE10P. We use a total of 20 sparse matrices for performance evaluation. Table III
summarizes the information of the sparse matrices. These matrices have been widely
used in previous works [Bell and Garland 2009], [Choi et al. 2010], [Monakov et al.
2010], [Su and Keutzer 2012], [Liu and Vinter 2015], [Williams et al. 2009]. All matri-
ces except Dense are downloadable at the University of Florida Sparse Matrix Collec-
tion [Davis and Hu 2011]. In our experiments, we also use CUSPARSE V7.0 [NVIDIA
2014], CUSP [Bell and Garland 2009], clSpMV [Su and Keutzer 2012], and CSR5 [Li-
u and Vinter 2015] for performance comparisons. CUSPARSE supports three formats
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Table III. The sparse matrices used in the experiments 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Experimental Methodology 
We implemented our proposed scheme in OpenCL[19]. Our experiments have been performed on both an Nvidia GTX680 
GPU and an Nvidia GTX480 GPU. 
We use a total of 20 sparse matrices, 14 of them are from [23] and 6 of them are from[16]. Table 2 summarizes the 
information of the sparse matrices, including the size, total number of non-zeros, and number of non-zerosper row. These 
matrices have been widely used in previous works [1][7][12][16][23]. 
In our experiments, we also use CUSPARSE V5.0[13], 
CUSP[1], and clSpMV [16] for performance comparisons. 
CUSPARSE supports three formats HYB, BCSR, and CSR. 
As the HYB format is a hybrid format combining the 
advantages of the ELL and COO formats, the row length of 

the ELL part is configurable. We manually searched the row 
length in a wide range and use the best performing one for 
each matrix. For the BCSR format in CUSPARSE, we also 
searched the block size for the best performance. For 
clSpMV, besides the COCKTAIL format, which uses 

Spyplot Name Size Non-zeros (NNZ) NNZ/Row 
 Dense 2K * 2K 4000000 2000 
 Protein 36K * 36K 4344765 119 
 FEM/Spheres 83K * 83K 6010480 72 
 FEM/Cantilever 62K * 62K 4007383 65 
 Wind Tunnel 218K*218K 11634424 53 
 FEM/Harbor 47K * 47K 2374001 59 
 QCD 49K * 49K 1916928 39 
 FEM/Ship 141K*141K 7813404 28 
 Economics 207K*207K 1273389 6 
 Epidemiology 526K*526K 2100225 4 
 FEM/Accelerator 121K*121K 2620000 22 
 Circuit 171K*171K 958936 6 
 Webbase 1M * 1M 3105536 3 

 LP 4K * 1.1M 11279748 2825 
 Circuit5M 5.56M* 5.56M 59524291 11 
 eu-2005 863K*863K 19235140 22 
 Ga41As41H72 268K*268K 18488476 67 
 in-2004 1.38M*1.38M 16917053 12 
 mip1 66K* 66K 10352819 152 
 Si41Ge41H72 186K*186K 15011265 81 

 
HYB, BCSR, and CSR. We manually searched the best performing configuration for
each matrix. For the BCSR format in CUSPARSE, we also searched the block size for
the best performance. For clSpMV, besides the COCKTAIL format which uses different
formats for different partitions of a matrix, we also tested all the single formats and
chose the best performing one for each matrix. Since the CUDA code is not support-
ed on AMD platforms, we only compared our scheme with clSpMV on AMD FirePro
W8000. On Intel MIC, we compared our scheme with CSR5 [Liu and Vinter 2015]. The
code of our proposed framework is available at http://code.google.com/p/yaspmv/.

6. EXPERIMENTAL RESULTS
6.1. Memory footprint size comparison between different formats
We evaluate the impact of our proposed BCCOO/BCCOO+ format on memory band-
width. In BCCOO/BCCOO+ format, all the information, including the bit flag array,
the col index array, the data value array, and the auxiliary information described in
Section 2.4, is only read once. We assume that it is also the case for all the other for-
mats for comparison. Therefore, we can simply use the total size the arrays to show
the memory footprint of each format. The results are shown in Table IV. As our auto-
tuning framework selects the BCCOO+ format only for the matrix LP, we do not sepa-
rate the BCCOO and the BCCOO+ format. For some sparse matrices, due to the high
variance in the number of non-zeros in different row, the ELL format is not applica-
ble (labeled ’N/A’ in Table IV). From Table IV, we find that BCCOO/BCCOO+ format
significantly reduces the storage size of various sparse matrices. BCCOO/BCCOO+ for-
mat reduces the storage size by 40% on average compared with the COO format, 31%
on average compared with the best single format among all the 9 formats in clSpMV,
and 21% on average compared with the COCKTAIL format.

6.2. Performance on NVIDIA and AMD GPUs
We first examine the performance contributions from different optimizations in our
approach, including memory footprint reduction, efficient segmented sum/scan, adja-
cent synchronization to remove global synchronization, and fine-grain optimizations,
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Table IV. The memory footprint size (MB) of different formats

 

 

 
 
 
 
 

Name COO ELL Cocktail Best Single BCCOO 
Dense 48 32 17 17 17 
Protein 52 59 40 34 21 
FEM/Spheres 72 54 52 51 31 
FEM/Cantilever 48 39 25 25 21 
Wind Tunnel 140 314 78 78 65 
FEM/Harbor 28 54 24 24 14 
QCD 23 15 15 15 9 
FEM/Ship 94 115 56 59 34 
Economics 15 73 14 28 8 
Epidemiology 25 17 17 17 14 
FEM/Accelerator 31 79 26 25 17 
Circuit 12 483 9 23 6 
Webbase 37 N/A 29 138 27 
LP 135 1927 91 91 85 
Circuit5M 714 N/A 578 714 516 
eu-2005 231 N/A 248 209 159 
Ga41As41H72 222 1505 139 170 136 
in-2004 203 N/A 209 203 132 
mip1 124 N/A 66 54 51 
Si41Ge41H72 180 983 118 135 105 
Average 122 N/A 93 106 73 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

bestsingle format among all the 9 formats included in 

clSpMV, and 21% compared to the COCKTAIL format.  
In the second experiment, we compare the performance of 
our proposed scheme to the state-of-art techniques. The 
results of GTX680are shown in Figure 13 and the results of 
our proposed approach are labeled ‘yaSpMV’ in the figure. 
From the figure, we can see that our proposed approach 
outperforms the existing schemes for all the matrices except 
Dense. The Dense matrix prefers a block size of 2x8 as used 
in the BCSR format from the ‘clSpMV best single’ results. 
However, our auto-tuning framework limits the maximal 
block height is limited to 4, thereby achieving sub-optimal 
performance. Using the harmonic mean (H-mean) as the 
average throughput, our yaSpMV achieves an average 
performance improvement of 65% over CUSPARSE, 70% 
over clSpMV COCKTAIL, 88% over clSpMV best single, 
and 150% over CUSP.The highest performance 
improvement of yaSpMV achieved over clSpMV 
COCKTAIL is on matrix LP (195%). Compared to 
CUSPARSE, the highest performance gain of yaSpMV is 
from the matrix mip1 (229%).  

In the third experiment, we examine the performance 

contributions from different optimizations in our approach, 
including memory footprint reduction, efficient segmented 
sum/scan, adjacent synchronization to remove global 
synchronization, and fine-grain optimizations,which consist 
of (a) the use of the short data type for the col_index array 
and (b) early check to skip the parallel scan on a 
last_partial_sums array if each thread-level tile in a 
workgroup-level tile contains a row stop. The results are 
shown in Figure 14. We start with the COO format with a 
tree-based segment sum (labeled ‘COO’). Then, we replace 
the COO format with our BCCOO/BCCOO+ format 
(labeled ‘BCCOO’). Next, we replace the tree-based 
segmented sum with our proposed efficient matrix-based 
segment sum/scan (labeled ‘Efficient segmented sum/scan’) 
while using another kernel to accumulate partial sums 
across workgroups. We then use adjacent synchronization to 
replace this kernel (labeled ‘adjacent synchronization’) and 
add the fine-grain optimizations (labeled ‘fine-gain 
optimizations’). From the figure, we can see that the main 
performance gains are from our proposed 
BCCOO/BCCOO+ format and our efficient segmented 
sum/scan for SpMV.  

 
Figure 13. Performance comparison between our proposed scheme (labeled 'yaSpMV') and CUSPARSEV 5.0, CUSP, 

clSpMV-best single, and clSpMV-COCKTAIL on GTX680 GPUs. 
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Figure 14. Performance Contributions from different optimization techniques (GTX680) 
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Fig. 13. Performance contributions from different optimization techniques on GTX680 (in single-precision).

which consist of (a) the use of the short data type for the col index array and (b) skip
the parallel scan on a last partial sums array if possible. The results are shown in
Figure 13. We start with the COO format with a tree-based segment sum (labeled
’COO’). Then, we replace the COO format with our BCCOO/BCCOO+ format (labeled
’BCCOO’). Next, we replace the tree-based segmented sum with our proposed efficient
matrix-based segment sum/scan (labeled ’Efficient segmented sum/scan’), in which the
global synchronization is used to accumulate partial sums across workgroups. We then
replace the global synchronization by the adjacent synchronization (labeled ’adjacent
synchronization’) and add the fine-grain optimizations (labeled ’fine-gain optimization-
s’). From the figure, we can see that the main performance gains are from our proposed
BCCOO/BCCOO+ format and our efficient segmented sum/scan for SpMV.

Next, we compare the performance of our proposed scheme with the state-of-the-
art techniques on GPUs. The single-precision performance on GTX680 are shown in
Figure 14, in which our approach is labeled by ’yaSpMV’. We can see that yaSpMV
outperforms the existing schemes for all the matrices except Dense. The Dense matrix
prefers a block size of 2x8 in the BCSR format, which is selected as the best single for-
mat of clSpMV for Dense matrix. However, our auto-tuning framework limits the maxi-
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Fig. 14. Single-precision performance comparison between our proposed scheme (labeled ’yaSpMV’) and
CUSP, clSpMV-best single, and clSpMV-COCKTAIL on GTX680 GPUs.
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Fig. 15. Single-precision performance comparison between our proposed scheme (labeled ’yaSpMV’) and
CUSP, clSpMV-best single, and clSpMV-COCKTAIL on GTX480 GPUs.
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Fig. 16. Single-precison performance comparison between our proposed scheme (labeled ’yaSpMV’) and
CUSPARSE V7.0, and CSR5 on Nvidia Tesla K20. We also mark the performance winner between strategy
(1) (labeled ’ST1’) and strategy (2) (labeled ’ST2’) for yaSpMV.

mal block height to 4, thereby achieving sub-optimal performance. Using the harmonic
mean (H-mean) as the average throughput, yaSpMV achieves an average performance
improvement of 65% over CUSPARSE, 70% over clSpMV COCKTAIL, 88% over clSp-
MV best single, and 150% over CUSP. The highest performance gain of yaSpMV over
clSpMV COCKTAIL is achieved on matrix LP (195%). Compared with CUSPARSE,
the highest performance gain of yaSpMV is achieved on matrix mip1 (229%).

We further evaluate the single-precision performance of SpMV on Nvidia GTX480
GPUs, Tesla K20, GeForce Titan X, and AMD FirePro W8000 GPUs. The results are
shown in Figure 15, Figure 16, Figure 17 and Figure 18. On Nvidia GTX 480, our
proposed yaSpMV achieve significantly higher performance than existing approaches
(up to 162% better than clSpMV COCKTAIL and up to 150% better than CUSPARSE),
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Fig. 17. Single-precison performance comparison between our proposed scheme (labeled ’yaSpMV’) and
CUSPARSE V7.0, and CSR5 on GeForce Titan X GPUs. We also mark the performance winner between
strategy (1) (labeled ’ST1’) and strategy (2) (labeled ’ST2’) for yaSpMV.
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Fig. 18. Single-precision performance comparison between our proposed scheme (labeled ’yaSpMV’) and
clSpMV-best single, clSpMV-COCKTAIL, and CSR5 on AMD FirePro W8000 GPUs. We also mark the per-
formance winner between strategy (1) (labeled ’ST1’) and strategy (2) (labeled ’ST2’) for yaSpMV.

as shown in Figure 15. The only exception is the Epidemiology matrix. It has 4 non-
zeros on each row, which is a perfect fit for the ELL format. For this matrix, yaSpMV
has a suboptimal performance of 25.5 GFLOPS. The best performing approach for this
matrix, CUSPARSE, has a throughput of 28.5 GFLOPS. On average using H-mean,
yaSpMV achieves a performance improvement of 40% over clSpMV COCKTAIL, 60%
over clSpMV best single, 74% over CUSP, and 42% over CUSPARSE. As shown in
Figure 16 and Figure 17, yaSpMV achieves the performance improvement of 65.8%
on average on Tesla K20 and 73.7% on average on GeForce Titan X over CUSPARSE
V7.0; and achieves the performance improvement of 56.4% on average on Tesla K20
and 53.6% on average on GeForce Titan X over the recently proposed format - CSR5.

As shown in Figure 18, on AMD FirePro W8000, yaSpMV performs better than clSp-
MV COCKTAIL format on most matrices, and the performance improvement is up to
2617% and on average 255%. Although there are only 9 matrices which our proposed
yaSpMV performs better than the clSpMV best single format, yaSpMV also achieves
a performance gain of 40% on average. Compared with CSR5, yaSpMV achieves a per-
formance gain of 14.9% on average.

To further understand how strategy (1) and strategy (2) of yaSpMV perform on Tesla
K20, GeForce Titan X, and AMD FirePro W8000, we mark the performance winner
between these two strategies in Figures 16, 17, and 18. We find that both strategies are
the potential winner for different sparse matrices, which demonstrates the necessity
of the coexistence of the two strategies in our scheme.

We also evaluate the double-precision performance of SpMV on Tesla K20 and AMD
FirePro W8000 GPUs. The results are shown in Figure 19, Figure 20, Figure 21 and
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Fig. 19. Double-precison performance comparison between our proposed scheme (labeled ’yaSpMV’) and
CUSPARSE V7.0, and CSR5 on Nvidia Tesla K20.
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Fig. 20. Double-precision performance comparison between our proposed scheme (labeled ’yaSpMV’) and
clSpMV-best single, clSpMV-COCKTAIL and CSR5 on AMD FirePro W8000 GPUs.
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Fig. 21. Double-precision performance of our proposed scheme with different ’bunch size’ and ’block height’
on Intel MIC.

Figure 22. As shown in Figure 19, on Tesla K20, yaSpMV achieves the performance
improvement of 34.0% on average over CUSPARSE V7.0 and 16.2% on average over
CSR5. As shown in Figure 20, on AMD FirePro W8000, yaSpMV achieves the perfor-
mance improvement of 9.7% on average over CSR5.

6.3. Performance on Intel MIC
Figure 21 presents the results of our proposed scheme with different ’bunch size’ and
’block height’ on Intel MIC. We can see that under different configurations of this two
parameters, the performance varies largely. This is because the multiplication of these
two parameters determines the width of SIMD instructions on Intel MIC, as discussed
in Section 3.2.2. When it fits to the width of 512-bit with less zero elements (determined
by the value of ’block height’), it can get the best performance. Thus, we need the auto-
tuning framework to select the best configuration. As shown in Figure 22, the auto-
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Fig. 22. Double-precision performance comparison between our proposed scheme (labeled ’yaSpMV’) and
CSR5 on Intel MIC.
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Fig. 23. Double-precision performance of yaSpMV on Nvidia Tesla K20, AMD FirePro W8000 and Intel
MIC.

tuned yaSpMV gets an average of 8.97 Gflops for the sparse matrixes on Intel MIC in
double precision, which is comparable with CSR5 (an average of 9.01 Gflops).

We also compare the performance between GPUs (Nvidia Tesla K20 and AMD Fire-
Pro W8000) and Intel MIC in the context of yaSpMV, and the results is presented in
Figure 23. Note that the double-precision peak performance of Nvidia Tesla K20, AMD
FirePro W8000 and Intel MIC is 1.17 Tflops, 806 Gflops and 1.011 Tflops, respectively.
We find that both the throughput and the performance efficiency of GPUs are higher
than Intel MIC. The average performance efficiency of yaSpMV on Nvidia K20, AMD
W8000, and Intel MIC is 1.54%, 2.27%, and 0.82%, respectively. The lower efficiency
of yaSpMV on Intel MIC is caused by the following reasons: (1) BCCOO is a block-
based format to exploit the register reusing. However, register blocking leads to low
SIMD efficiency on Intel MIC [Liu et al. 2013]. Although we coarsen the workload of
each thread to improve the SIMD efficiency, it still brings some performance penalty;
(2) Intel MIC is lack of texture cache, which is more useful for the irregular accesses
of the multiplied vector. Thus, the load imbalance of each thread caused by irregular
accesses is more severe on Intel MIC.

7. RELATED WORK
Bolz et al. first introduced the GPUs for SpMV [Bolz et al. 2003]. Bell and Garland
[Bell and Garland 2009] implemented several well-known formats on Nvidia GPUs.
These formats include DIA, ELL, CSR, COO and a hybrid format HYB, which com-
bines the advantage of the ELL and COO formats. Su et al. [Su and Keutzer 2012]
proposed the COCKTAIL format, which uses different formats to represent different
partitions of a matrix. Vzquez et al. [Vázquez et al. 2011] proposed a derivative format
of ELLPACK, ELL-R. They use an auxiliary array to store the row lengths. Alexander
et al. [Monakov et al. 2010] proposed the Sliced ELL format (SELL). They horizontally
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partition the original matrix into several slices to reduce the filling zeros. Compared
with the ELL format, the ELL-R and SELL formats have less padding zeros. Kreutzer
et al. [Kreutzer et al. 2014] proposed SELL-C-σ, which is a variant of SELL. To further
reduce the padding overhead, the rows are sorted by the number of non-zero entries
within a ”sorting scope” σ. SELL-C-σ is SIMD-friendly, and suitable for different ar-
chitectures, including GPU, Intel MIC, and CPU. Compared with SELL-C-σ, yaSpMV
exploits register reusing and may have less padding zeros. However, the block-based
design of yaSpMV makes it less suitable for Intel MIC than SELL-C-σ. We did not com-
pare the performance of yaSpMV with SELL-C-σ, since the source code is not available
to us yet. Liu et al. [Liu et al. 2013] proposed the ESB format for Intel MIC, which ex-
tends the ELLPACK format with finite-window sorting for high SIMD efficiency, a bit
array to encode nonzero locations for lower padding overhead, and column blocking for
good locality. The column blocking method used in ESB motivates us to propose the
BCCOO+ format to improve the locality when accessing the multiplied vector.

Based on the CSR format, Kozaa et al. [Koza et al. 2012] proposed a compressed
multiple-row storage format for SpMV on GPUs. The advantage of this format is that
the adjacent rows may be processed by the same thread, so the multiplied vector data
could be reused. Choi et al. implemented the BCSR and BELL formats on GPUs [Choi
et al. 2010] and proposed an auto-tuning framework. CSR-Adaptive [Greathouse and
Daga 2014] is proposed to exploit the performance of SpMV with CSR format on GPUs.
We tried to compare the performance of yaSpMV with CSR-Adaptive, which is imple-
mented in ViennaCL. However, loading the sparse matrix from the disk to memory
in ViennaCL is too time consuming (more than several days for some large matrices).
Thus, we terminated the experiments on this format. Daga and Greathouse [Daga and
Greathouse 2015] further improved CSR-Adaptive using novel reduction techniques
and proposed a new SpMV algorithm for the irregular matrices with very long rows.
Liu et al. presented CSR5 [Liu and Vinter 2015], which is insensitive to the sparsi-
ty structure of the input matrix and features fast format convention. Compared with
CSR5, yaSpMV has almost equivalent performance on Intel MIC, and has an advan-
tage on Nvidia and AMD GPUs. Liu and Schmidt [Liu and Schmidt 2015] proposed
LightSpMV, which uses the standard CSR format and improves the performance by
fine-grained dynamic distribution of matrix rows over warps and vectors.

There are some works focusing on compression and reordering techniques as well
[Buluç et al. 2011], [Pichel et al. 2012]. The challenge of compression technique is
the complexity of the decompression algorithm. The problem with the reordering tech-
nique is that it changes the inherent locality of the original matrix. A recent work by
Tang et al. [Tang et al. 2013] studies bit-representations to compress index arrays.
Similar to our work, a difference function is applied to index arrays. The difference
from our proposed formats is that a bit packing scheme is then used to encode the
delta values, which makes their decompression scheme more complicated than ours
and also does not exploit the row stop information.

Blelloch et al. [Blelloch et al. 1993] first introduced the segmented operations to Sp-
MV on vector multiprocessors. Harris [Harris et al. 2007] implemented the segmented
scan based SpMV in the library CUDPP. Because they used a tree based scan algo-
rithm, which has been shown to be inefficient [Yan et al. 2013], the performance is
limited. Baskaran et al. [Baskaran and Bordawekar 2008] implemented a more effi-
cient segmented scan based SpMV using the matrix based scan [Dotsenko et al. 2008].
However, their scan-based implementation also is outperformed by their alternative
implementations [Baskaran and Bordawekar 2008]. Bell and Garland implemented
their COO format use the segmented reduction (scan) algorithm. However, due to the
disadvantage of the COO format and the two-kernel implementation, the performance
is not highly competitive. Different from the previous works, we propose the new BC-
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COO/BCCOO+ format to drastically reduce the bandwidth requirement and efficient
segmented sum/scan algorithms on different many-core architectures. Our algorithm
only needs one kernel and explores a number of optimization techniques.

8. CONCLUSIONS
In this paper, we present yet another framework for SpMV on many-core architec-
tures, including GPUs and Intel MIC. First, we propose a new format, called blocked
compressed common coordinate (BCCOO), for sparse matrices. The key idea is to ex-
tend the COO format with blocking and to use a bit flag array to replace the row index
array. We also propose to vertically partition a sparse matrix before using the BC-
COO format, for better locality of the accesses to the multiplied vector. Second, we pro-
pose a highly efficient matrix-based segmented sum/scan for SpMV. Our matrix-based
segmented sum/scan is closely coupled to our BCCOO/BCCOO+ format to reduce the
memory bandwidth and achieve load balance. Third, we propose an auto-tuning frame-
work to further improve the performance with low overhead.

Our performance results from a set of 20 sparse matrices show that our pro-
posed framework significantly advances the state-of-the-art SpMV schemes. In single-
precision, yaSpMV outperforms CUSPARSE 7.0 by 65.8% on average on Tesla K20,
by 73.7% on average on GeForce Titan X; outperforms clSpMV COCKTAIL format by
40% on average on GTX480 GPUs, by 70% on average on GTX680 GPUs, by 255%
on average on AMD FirePro W8000 GPUs; and outperforms CSR5 by 56.4% on aver-
age on Tesla K20, by 53.6% on average on GeForce Titan X, by 14.9% on average on
AMD FirePro W8000. In double-precision, yaSpMV outperforms CUSPARSE V7.0 by
34.0% on average on Tesla K20; and outperforms CSR5 by 16.2% on average on Tesla
K20, by 9.7% on average on AMD FirePro W8000. On Intel MIC, yaSpMV has almost
equivalent performance compared with CSR5.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China under Grant No. 61502450,
Grant No. 61432018, Grant No. 61521092, and Grant No. 61272136; National Key Research and Devel-
opment Program of China under Grant No.2016YFB0200803; NSF project 1216569; and a gift fund from
AMD Inc. Shigang Li and Shengen Yan are the corresponding authors. The authors would like to thank the
Supercomputing Center of CAS for providing free Intel MIC machines.

REFERENCES
Muthu Manikandan Baskaran and Rajesh Bordawekar. 2008. Optimizing sparse matrix-vector multiplica-

tion on GPUs using compile-time and run-time strategies. IBM Reserach Report, RC24704 (W0812-047)
(2008).

Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-vector multiplication on throughput-
oriented processors. In Proceedings of the Conference on High Performance Computing Networking, S-
torage and Analysis. ACM, 18.

Guy E Blelloch. 1989. Scans as primitive parallel operations. Computers, IEEE Transactions on 38, 11
(1989), 1526–1538.

Guy E Blelloch, Michael A Heroux, and Marco Zagha. 1993. Segmented operations for sparse matrix compu-
tation on vector multiprocessors. Technical Report. DTIC Document.

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröoder. 2003. Sparse matrix solvers on the GPU:
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