
Massively Scaling the Metal Microscopic Damage Simulation on
Sunway TaihuLight Supercomputer

Shigang Li
SKL Computer Architecture, Institute
of Computing Technology, Chinese

Academy of Sciences
shigangli.cs@gmail.com

Baodong Wu
SKL Computer Architecture, Institute

of Computing Technology, CAS;
University of Chinese Academy of

Sciences
wubd.cs@gmail.com

Yunquan Zhang
SKL Computer Architecture, Institute
of Computing Technology, Chinese

Academy of Sciences
yunquan.zhang@gmail.com

Xianmeng Wang
University of Science and Technology

Beijing
wangxianmeng@xs.ustb.edu.cn

Jianjiang Li
University of Science and Technology

Beijing
lijianjiang@ustb.edu.cn

Changjun Hu
University of Science and Technology

Beijing
huchangjun@ies.ustb.edu.cn

Jue Wang
Computer Network Information

Center, CAS
wangjue@sccas.cn

Yangde Feng
Computer Network Information

Center, CAS
ydfeng@sccas.cn

Ningming Nie
Computer Network Information

Center, CAS
nienm@sccas.cn

ABSTRACT
The limitation of simulation scales leads to a gap between simula-
tion results and physical phenomena. This paper reports our efforts
on increasing the scalability of metal material microscopic damage
simulation on the Sunway TaihuLight supercomputer. We use a
multiscale modeling approach that couples Molecular Dynamics
(MD) with Kinetic Monte Carlo (KMC). According to the charac-
teristics of metal materials, we design a dedicated data structure to
record the neighbor atoms for MD, which significantly reduces the
memory consumption. Data compaction and double buffer are used
to reduce the data transfer overhead between the main memory and
the local store. We propose an on-demand communication strategy
for KMC to remarkably reduce the communication overhead. We
simulate 4 ∗ 1012 atoms on 6,656,000 master+slave cores using MD
with 85% parallel efficiency. Using the coupled MD-KMC approach,
we simulate 3.2∗1010 atoms in 19.2 days temporal scale on 6,240,000
master+slave cores with runtime of 8.6 hours.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;
• Computer systems organization→ Multicore architectures;

KEYWORDS
parallel scalability, microscopic damage simulation, Sunway Taihu-
Light, Molecular Dynamics, Kinetic Monte Carlo

1 INTRODUCTION
Microscopic damage in materials is difficult to observe by physi-
cal experiments. Alternatively, software simulation is a promising
method to understand the evolution mechanism of the microscopic
damage. The existing simulation software in materials science, such
as Molecular Dynamics (MD) [7, 8, 22, 27] and Kinetic Monte Carlo
(KMC) [14, 23, 31], has good performance in a specific temporal

and spatial range. However, the microstructure and damage evolu-
tion process of materials have a much larger spatio-temporal scale.
Thus, there is a big gap between simulation results and physical
phenomena due to the limitation of simulation scales.

Typically, the simulation scales are limited due to the following
two reasons: (1) Single model usually only performs well at a spe-
cific narrow range. For example, MD commonly simulates millions
to billions of atoms at picoseconds to nanoseconds. In this paper, we
use a coupledMD-KMC approach to achieve both high temporal and
spatial scales. (2) Large-scale simulation has a high computational
complexity and requires a great amount of computing resources. Al-
though supercomputers are becoming more powerful, the existing
software lags behind because of the high effort of code porting and
optimization on new machines. We optimize our coupled MD-KMC
code on the Sunway TaihuLight supercomputer, and utilize its rich
computing resources to conduct large-scale microscopic damage
simulation.

In the last decade, the computing capability of supercomputers
has been growing rapidly. The top one system in 2016, Sunway
TaihuLight [6], possesses 93 PFlops sustained Linpack performance.
Besides, due to the constrains caused by the heat dissipation and
power consumption issues, recent large systems come in the form of
heterogeneous systemswith both CPUs andmany-core accelerators,
such as GPUs [20], Intel Xeon Phi [3], and Sunway many-core
accelerator [6]. To achieve good performance, applications should
efficiently utilize both CPUs and accelerators.

Our application simulates the microscopic damage for the metal
material composed of iron (Fe) atoms. Our application also sup-
ports the simulation of different atoms, e.g., the alloy materials.
To achieve this, more interpolation tables should be used to cal-
culate the embedded-atom method (EAM) potential, as discussed
in Section 2.1.2. The atoms are modeled in Body-Centered Cubic
(BCC) structure, and EAM potential [4] is used as physical inter-
action. We use MD to simulate the defect generation caused by

cascade collision, and use KMC to simulate the defect evolution and
clustering. We aim at scaling the simulation with the increasing of
the workload (larger temporal and spatial scale) and the available
hardware resources. However, there are several challenges: (1) the
memory consumption linearly increases with the number of the
atoms, which may run out of the system memory and limits the
spatial scale; (2) communication overhead caused by ghost data
exchange and synchronization hinder the scalability with the in-
creasing of computation nodes; (3) the small local store on the slave
core of Sunway many-core processor makes it difficult to utilize
the accelerator efficiently. We propose several methods, including
a dedicated data structure for metal materials, on-demand commu-
nication, and data compaction, to overcome the above challenges.
We simulate 4 ∗ 1012 atoms on 6,656,000 master+slave cores using
MD with 85% parallel efficiency (weak scaling). Strong scaling tests
for MD show that it simulates 3.2 ∗ 1010 atoms on 6,240,000 mas-
ter+slave cores with 41.3% parallel efficiency. We simulate 3.2∗1010
atoms in 19.2 days temporal scale on 6,240,000 master+slave cores
using the coupled MD-KMC approach, with runtime of 8.6 hours.

The key contributions of this paper are as follows:
(1) We improve the previously proposed data structure, lattice

neighbor list [11], which significantly reduces the memory
consumption while deals with the run-away atoms more
efficiently.

(2) We compact the interpolation table for force calculation,
which remarkably reduces the data transfer overhead be-
tween the main memory of CPU and the local store of slave
cores.

(3) We propose an on-demand communication strategy for KMC
to reduce the communication overhead.

(4) Experimental results show that our coupled MD-KMC ap-
proach exhibits good scalability on the Sunway TaihuLight
supercomputer. The simulation results successfully reveal
the vacancy cluster phenomenon.

In the next section, we discuss the coupled MD-KMC approach
for the microscopic damage simulation and the optimizations for
increasing the scalability on the heterogeneous parallel system.
Sections 2.1 and 2.2 discuss MD and KMC, respectively. Experi-
mental results and analysis on Sunway TaihuLight are presented
in Section 3. Section 4 discusses the related work, and Section 5
concludes.

2 A COUPLED MD-KMC APPROACH
We use a coupled MD-KMC approach to simulate the microscopic
damage under the environment of irradiation for iron material. The
iron atoms are modeled in Body-Centered Cubic (BCC) structure.
BCC has one lattice point in the center of the cube and eight corner
points. If a atom runs away from the lattice point, it forms a va-
cancy at the lattice point. The side length of the cube is called lattice
constant. The BCC structure is shown in Figure 1. MD simulates
the defect generation caused by cascade collision, and outputs the
coordinates of vacancy and the information of atoms. KMC sim-
ulates the defect evolution and vacancies clustering. The coupled
MD-KMC approach has been intensively studied in the field of
physics [16, 24, 29]. This paper focuses on how to scale it up on
supercomputers.

Fe

Vacancy

Figure 1: The structure of body-centered cubic.

Embedded-Atom Method (EAM) potential is used as physical
interaction between the atoms. Typically, EAM potential consists
of pair potential and embedding potential, as shown Equation (1),
in which 𝑒 denotes pair potential, 𝐹 denotes embedding energy,
and 𝜌 denotes the electron cloud density. For a specific atom, pair
potential 𝑒 and electron cloud density 𝜌 are the accumulated ef-
fect of the neighbor atoms within the cutoff radius, as shown in
Equation (2) and Equation (3). For both MD and KMC, the EAM po-
tential calculation is the core computation part. MD uses the EAM
potential to calculate the forces of the atoms, and then updates
the coordinates and the velocity of the atoms. KMC uses the EAM
potential to calculate the probability of the vacancy transition.

𝐸𝑡𝑜𝑡𝑎𝑙 =

𝑛∑
𝑖=1

𝑒𝑖 +
𝑛∑
𝑖=1

𝐹 (𝜌𝑖) (1)

𝑒𝑖 =
1
2
∑
𝑖≠𝑗

𝜙𝑖 𝑗 (𝑟𝑖 𝑗) (2)

𝜌𝑖 =
∑
𝑖≠𝑗

𝑓𝑖 𝑗 (𝑟𝑖 𝑗) (3)

To scale the application (both MD and KMC) across multiple
computation nodes, we use the standard domain decomposition to
equally partition the simulation box. Each computation node (i.e.,
each process) is responsible for a subdomain. To calculate the state
of the atoms on the edge of the subdomain, the corresponding pro-
cess has to access the data on the edge of the neighbor subdomains,
which is commonly called ghost data. The ghost data should be
updated with the increasing of the time steps. Thus, each process
should communicate with the neighbor processes to exchange the
ghost data after each time step (or several time steps).

2.1 Molecular Dynamics
2.1.1 Lattice neighbor list for the BCC structure. The simulation

is based on the short-range forces. Thus, only the atoms within
a specific cutoff radius interact with the central atom. Two data
structures are commonly used to find the interaction atoms: neigh-
bor list [22, 25] and linked cell [9, 19, 27]. For neighbor list, each
atom maintains a list to store all the neighbor atoms within a dis-
tance which is equal to the cutoff radius plus a skin distance. Thus,
the memory consumption of neighbor list is costly. The neighbor
atoms should be updated after several time steps. Linked cell divides
the simulation box into cubic cells, whose edge length is equal to
the cutoff radius. Linked cell ensures that all interaction partners
for any given atom are located either within the cell of itself or
the surrounding cells. Each cell maintains all the atoms within it
and the pointers to the neighbor cells. Compared with neighbor

2

list, linked cell consumes less memory. However, it should update
the atoms within each cell at each time step, which leads to high
computational overhead.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

ID Information Pointer

0 Atom info Null

1 Atom info Null

2 Atom info Null

3 Atom info Null

4 Atom info Null

...

cutoff radius

Figure 2: Lattice neighbor list for a 2-dimension simulation
box. The black circles represent the atoms.

We focus on the microscopic damage simulation of the metal
material with the BCC structure under the environment of irradi-
ation. In this situation, most of the atoms stay very close to the
lattice point and only a few atoms would break the constrain and
run away from the lattice point. Based on this physical feature, we
design a dedicated data structure, called lattice neighbor list, to
store the atom information and record the neighbor atoms. We rank
the atoms in the order of their spatial distribution. The information
of the atoms, such as coordinates, velocity, force, and electron cloud
density, is sequentially stored in a array in the order of the atoms
ranks. An example with a 2-dimension simulation box is shown
in Figure 2. Meanwhile, the neighbor atoms for a central atom are
also regularly distributed in a region determined by the cutoff ra-
dius. Therefore, we can easily calculate the indexes of the neighbor
atoms in the array for a central atom. As shown in Figure 2, the
neighbor atoms of 𝑎𝑡𝑜𝑚10 are 𝑎𝑡𝑜𝑚9, 𝑎𝑡𝑜𝑚11, 𝑎𝑡𝑜𝑚16, and 𝑎𝑡𝑜𝑚18.
For each central atom, the offsets of the neighbor atoms relative
to the central atom are the same. This means the indexes of the
neighbor atoms for each central atom can be calculated in the same
way.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Vacancy
ID Information Pointer

-1 Vacancy position Null

0 Atom info Null

2 Atom info Null

3 Atom info Pointer

4 Atom info Null

...

1 Atom info Null

Figure 3: Data structures for run-away atoms. The black cir-
cles represent the atoms.

Next, we discuss how to deal with the atoms which run away
from the lattice point in the lattice neighbor list structure. When
an atom runs away from the lattice point, it generates a vacancy, as
shown in Figure 3. We allocate another memory space to store the

information of the run-away atom, and leave the original entry in
the array to record the coordinates of the vacancy (ID is modified
to a negative number to indicate this is a vacancy). If a run-away
atom moves to a vacancy at the lattice point, the information of the
vacancy in the array is overlapped by the run-away atom. Other-
wise, the information of the run-away atom is linked to the entry of
the nearest lattice point to facilitate further processing. In Figure 3,
𝑎𝑡𝑜𝑚1 runs away and its information is linked to the entry of the
nearest regularly distributed neighbor 𝑎𝑡𝑜𝑚3. When a central atom
(regularly distributed) finds its neighbor atoms within the cutoff
radius, it not only checks the regularly distributed atoms, but also
checks the run-away atoms linked to the lattice points. When a
run-away atom finds its neighbor atoms within the cutoff radius,
it checks the same neighbor atoms as the nearest lattice point it is
linked to. Here, the extra overhead is the calculation of the nearest
lattice point that the run-away atom is linked to. In our simulation,
the number of the run-away atoms is only several millionth of
the number of all the atoms. Therefore, the extra overhead can be
ignored.

When exchanging the ghost data, the lattice points (either an
atom or a vacancy) in the ghost region is packed (unpacked) and sent
(received) according to the indexes in the array. For the ghost data at
the lattice points, the communication pattern is static, which can be
reused at each time step. For the run-away atoms, if they move into
the subdomain or the ghost region of the neighbor processes, we
pack their information and send it to the corresponding neighbor
processes.

While the authors of [11] have discussed the lattice neighbor
list structure, this paper further improves the structure by storing
the run-away atoms using linked lists rather than an array. The
benefit of using linked lists is two-fold. Firstly, the number of run-
away atoms may exceed the size of the array. The linked list can
overcome this drawback by having a dynamic size. Secondly, when
using the array, the overhead of finding neighbors between the
run-away atoms is 𝑂 (𝑁 2) (where 𝑁 is the number the run-away
atoms), since the relative position information between the run-
away atoms is lost. On the contrary, the linked lists can reduce
this overhead to 𝑂 (𝑁) since the run-away atoms are linked to
the nearest lattice point. Compared with the traditional neighbor
list and linked cell structures, our lattice neighbor list structure
significantly reduces the memory and computation cost, since it
does not have to maintain the extra structures and finds most of
the neighbor atoms by static indexes. Compared with LAMMPS
(using neighbor list) [22] and IMD (using linked cell) [27], our
lattice neighbor list structure reduces the memory consumption
significantly, and thus can simulate a larger number of atoms.

2.1.2 Reduce the data transfer cost between main memory and
local store. Nextwe discuss how to efficiently use slave cores on Sun-
way many-core processor to accelerate the calculation of EAM po-
tential. First, we briefly introduce the Sunway many-core architec-
ture [6]. As shown in Figure 4, it consists of four core groups (CGs).
Each CG includes one management processing element (MPE), one
computing processing element (CPE) cluster organized as an 8x8
mesh, and one memory controller (MC). For convenience, we call
MPE as master core and call CPE as slave core in this paper. Each
slave core has 64 KB local store, which can be configured as either

3

Network-on-Chip

MPE

PPU
MC

Main Memeory

CG2

System
Interface

CPE cluster
(8x8)

MPE

PPU
MC

Main Memeory

CG3

CPE cluster
(8x8)

MPE

PPU
MC

Main Memeory

CG0

CPE cluster
(8x8)

MPE

PPU
MC

Main Memeory

CG1

CPE cluster
(8x8)

Figure 4: Sunway many-core architecture.

a user-controlled buffer or a software-emulated cache that achieves
automatic data caching. Here we use it as a user-controlled buffer
since it generally obtains better performance [6]. These four CGs
are connected via the network on chip. The processor connects to
other outside devices through a system interface (SI). To accelerate
the computation using slave cores, we use one process on each
master core, and each process launches 64 threads (running on 64
slave cores) using the 𝐴𝑡ℎ𝑟𝑒𝑎𝑑 multithreading library supported
by Sunway TaihuLight. The subdomain of each process is further
equally partitioned into slabs, and each thread is responsible for
one slab.

S[3]

S[4]

...

Compacted
interpolation table

S[1]

S[0]

X = 7

Y
=

5
0

0
0

X = 1

Y
=

5
0

0
0

L[5,2]
...

...

...

...

...

...

...

Traditional interpolation table

Interpolation formula:
L[5,2] = (S[0] - S[4] + 8*(S[3] - S[1]))/12

Figure 5: Interpolation table compaction (using pair poten-
tial table as an example). L[5,2] is calculated using S[0], S[1],
S[3], and S[4] in the compacted table.

To calculate the EAM potential, we use the cubic spline inter-
polation method, which is also used in other MD software, such

as LAMMPS [22] and CoMD [8]. Typically, three interpolation ta-
bles are used for EAM potential computation, including electron
cloud density table, pair potential table, and embedding potential
table. During the computation, these three tables will be accessed
sequentially. Taking electron cloud density table as an example,
table querying would return the value of the electron cloud den-
sity according to the distance between two atoms. Each traditional
interpolation table (used in LAMMPS and CoMD) is a 5000*7 2D
array, where "5000" is the maximum distance between two atoms,
as shown in Figure 5. The interpolating function consists of 5000
segments (for different distances) of cubic functions. The 2D array is
the coefficient matrix for the cubic functions, in which the columns
3-6 are the coefficients of a cubic function and the columns 0-2 are
the coefficients of its derivative function. Thus, there are total 7
columns for the 2D array. The size of each traditional interpolation
table is about 273 KB, which exceeds the size of local store (64 KB)
on each slave core. Thus, traditional interpolation table can not
be loaded in the local store at one time. Each slave core has to fre-
quently uses DMA get operations (3 times for each neighbor atom
at each time step) to transfer the table entries from main memory
to local store, which severely damages the overall performance. To
solve this problem, we use a compacted interpolation table, of
which size is only 39 KB (1/7 of the traditional table). The compacted
interpolation table contains the values of 5000 sampling points (i.e.
the values of pair potentials between different distances). We load
the whole compacted table into the local store at one time. Then,
all the values in the traditional table can be calculated on the fly
using the compacted table and a specific interpolation formula, as
shown in Figure 5. Although this will bring extra computational
overhead, it can be amortized by significantly reducing the data
transfer overhead.

For alloy materials, more interpolation tables are used, since
there are different kinds of interaction for different atomic pairs.
Taking the Fe-Cu alloy as an example, there are three kinds of
electron cloud density tables, for the atomic pairs of Fe-Fe, Cu-Cu,
and Fe-Cu, respectively. The total size of these three compacted
tables will exceed the size of local store. Thus, we only load the
compacted table for the element with the highest content in the
local store, since it would be the most frequently used, and leave the
other tables in the main memory. Another method is to distribute all
the tables to the local stores of neighbor slave cores, and use register
communication supported by Sunway many-core architecture to
transfer data between the local stores. However, since which data
in the tables should be transferred cannot be known before runtime,
it is very difficult to describe these irregular communications using
register communication.

get(1)

compute(1)

get(2) put(1)

buffers(1)

compute(2)

get(1)

compute(1)

input buffers(2)output input output

wait wait wait

put(2)
...

Figure 6: Double buffer for overlapping atoms information
transfer with computation.

4

Since our simulation has large spatial scale, the atoms informa-
tion of one slab cannot be loaded into the local store at one time
either. Thus, each slab is further partitioned into blocks, and each
slave core processes the blocks one by one. For each block, the
slave core would get the atoms information into local store, and put
back the output results (the updated position and velocity) to the
main memory at each time step. To reduce the overhead of atoms
information transfer, we propose two methods: (1) Data reuse. For
the atoms information of one block, the data on the edge of the
block is actually the ghost data for the next block. Thus, we keep
the ghost data in the local store and reuse it in the next block, which
reduces the overhead of data transfer to some extent. (2) Double
buffer. Each slave core allocates two buffers on local store for the
input and output data of each block. While carrying out DMA put
or get on one buffer, it computes the potential or force on the other
buffer, and vice versa. In this way, we overlap atoms information
transfer with computation, as shown in Figure 6.

2.2 Kinetic Monte Carlo
Since the time step of MD is very short (typically at femtosecond
scale), the temporal scale of MD simulation is generally limited to
nanoseconds or less [32]. Kinetic Monte Carlo (KMC) is a stochas-
tic method, which simulates the time evolution of some processes
occurring with known transition rates among states. In our applica-
tion, to couple MD with KMC, the temporal scale of MD should at
least be 50 picoseconds. MD outputs the coordinates of vacancies
and atoms, which are used as the input of KMC. KMC continues
to simulate the vacancy clustering and evolution at a much larger
temporal scale.

There are several different KMC approaches, such as atomistic
KMC (AKMC) [1] and object KMC (OKMC) [15]. We choose to use
AKMC to reveal the defect evolution for metal material. AKMC uses
an on-lattice approximation method to map each atom or vacancy
to a lattice point, and the atoms and vacancies are uniformly named
as ’sites’. It describes the vacancy transitions (or events) as the
position exchanges between atoms and vacancies. For the BCC
structure in a 3D simulation box, as shown in Figure 1, there are
eight possible events for a vacancy (since it may exchange with one
of its eight nearest neighbors). The transition rate 𝑘𝑖 𝑗 is calculated
as

𝑘𝑖 𝑗 = 𝑣 exp(−Δ𝐸𝑖 𝑗/𝑘𝐵𝑇) (4)
where 𝑣 is the pre-exponential factor, Δ𝐸𝑖 𝑗 is the migration energy
(calculated by EAM potential) from the state 𝑖 to the state 𝑗 , 𝑘𝐵 is
Boltzmann constant, and 𝑇 is the temperature. We use the interpo-
lation method to calculate the EAM potential, which is the same as
MD and can be accelerated by the slave cores.

We use the semirigorous synchronous sublattice method [26]
based on domain decomposition to scale KMC acrossmultiple nodes.
The flowchart for the parallel KMC algorithm is given in Figure 7.
Firstly, we initialize the model by the outputs of MD simulation
and other parameters, such as the coordinates of the sites, sites
type (Fe or vacancy), and time threshold 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . After domain
decomposition, each process owns the sites within its subdomain
and the surrounding ghost sites. Different from MD, KMC requires
that all the sites in a subdomain be in the latest state even within a
time step. Thus, to eliminate the conflicts on the boundary of the

#1: Compute dt for the subdomain

Sub-divide 3D
subdomain into 8 sectors

MD outputs and
other parameters

All 8 sectors

finished?

Yes

No

Yes

#0: Model initialization

#2: Start from Sector0

#4: Compute the transition rates for all

the possible events in this sector

#3: Compute EAM potential for each atom

#5: Select an event to occur

#6: Exchange ghost sites

#7: Update the EAM potentials

End

#8: Select the

next sector

t > tthreshold ?#9: t += dt

No

Figure 7: The flowchart of the parallel KMC simulation.

subdomain, each subdomain is further partitioned into sectors [26].
Typically, there are eight sectors for each process in a 3D simulation
box and the eight sectors will be processed sequentially. Secondly,
the time step 𝑑𝑡 is calculated and the simulation starts from the
first sector. The transition rates for all the possible events within
the current sector are calculated according to the EAM potentials.
After the selected event occurs, it would exchange the ghost sites
with the neighbor processes and update potential of the influenced
atoms within the cutoff radius. At last, after finishing the simulation
on all the eight sectors, it would repeat from computing the next
time step 𝑑𝑡 until the time threshold 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is reached. In the
algorithm, the communication is mainly for ghost sites exchange.
Although the communication is regular with fixed neighbors and
communication traffic, the communication overhead significantly
increases with the increasing of computing nodes and the workload
[31]. Thus, we present an on-demand communication strategy to
reduce the communication traffic.

2.2.1 On-demand communication strategy. To discuss the on-
demand communication strategy in detail, we use an example of
nine processes on a 2D simulation box as shown in Figure 8. The
2D box is equally partitioned into nine subdomains, and each pro-
cess further partitions its subdomain into four sectors. Each sector
consists of local sites and the surrounding ghost sites (of which

5

P0 P1 P2

P3 P4 P5

P6 P7 P8

(a) 2d domain partition for 9
processors

P0 P1 P2

P3 P5

P6 P7 P8

recv recv

recv send

send

P4

send

(b) Get the latest ghost sites from
neighbor processes

P0 P1 P2

P3 P5

send
send

recv

recvrecv

send

P6 P7 P8

P4

(c) Put the ghost sites back to the
neighbor processes

B

C
D

P0 P1 P2

P3

P4
P5

P6 P7 P8

send send

send

An event occurred

A

E F

(d) On-demand communication

Figure 8: The traditional communication pattern of KMC and the on-demand communication method.

width is determined by the cutoff radius). As shown in Figure 8(a),
the solid lines represent the boundaries of the subdomains, the
dotted lines represent the boundaries of the local sites of the sec-
tors, and the shading region represents the ghost sites for a sector.
Before processing a sector, each process has to get partial ghost
sites (except those in the local subdomain) from the subdomains of
its neighbor processes, as shown in Figure 8(b). After finishing the
simulation of the current sector, each process has to put the ghost
sites back to its neighbor processes, as shown in Figure 8(c). The
philosophy of the two-time communication for each sector is to
keep the sites in the subdomain and its ghost sites always in the
latest state. This two-time communication pattern is widely used
in the KMC software, such as SPPARKS [23] and KMCLib [14]. The
neighbor processes and the send/receive buffers are determined at
the initialization phase, and keep static as the simulation moves on.
All the sites in the ghost region have to be transferred regardless
of whether all the sites are updated or not. This causes a lot of
redundant communication, since generally only a very small part
of sites in the ghost region are affected when an event occurs. The
communication redundancy is more expensive as the spatial scale
of the simulation getting larger.

To eliminate the communication redundancy, we present an
on-demand communication strategy. It changes the traditional
static communication pattern to a dynamic communication pattern,
namely the sites to be transferred and the neighbor processes are
determined at runtime according to the state of the simulation sys-
tem. When a vacancy transition (an event) occurs, it only affects
the potential of atoms within the cutoff radius and the other sites
keep steady. To keep the sites in the subdomain and the ghost sites
always in the latest state, we only have to transfer the affected sites
to the corresponding neighbor processes after the simulation of a
sector within a time step is finished. As illustrated in Figure 8(d),
after the top-left sector of 𝑃4 is processed, it checks whether the
sites in regions 𝐴, 𝐵, and 𝐶 are affected and puts the influenced
sites into the sending queue. Taking region 𝐴 as an example, a site
in region 𝐴 is either a ghost site or a local site from the perspective
of 𝑃4’ three neighbor processes (𝑃0, 𝑃1, and 𝑃3). Thus, if any site in
region 𝐴 is affected by the events, 𝑃4 would send it to 𝑃3, 𝑃0, and
𝑃1. Similar acts are carried out for regions 𝐵 and 𝐶 . Meanwhile, 𝑃4
receives data from the neighbor processes and unpacks the data
into either region 𝐷 , 𝐸, or 𝐹 to update the sites. In this way, only

the affected sites are transferred. Considering the vacancy concen-
tration is very low in our application, the communication traffic
is reduced significantly compared with the traditional communi-
cation pattern. The on-demand communication strategy can be
implemented using MPI [17] two-sided communication interfaces,
and both sender and receiver have to know all the information
about the message. Since the source, the tag, and the size of the mes-
sages are determined at runtime, the receiver does not know this
information before receiving the messages. Thus, the receiver has
to use MPI_Probe to query the information beforehand, and launch
MPI_Recv afterwards to receive the actual data. However, since
there is a match between the sender and the receiver, the sender
has to send a zero-size message to the receiver even there is no
update in the ghost sites. Alternatively, we can use MPI one-sided
communication interfaces, by which only one side is involved in
the communication, to eliminate these zero-size messages. Firstly,
each process opens a globally-shared window on the subdomain.
Secondly, each process puts the updates in the ghost sites to its
neighbor processes. Thirdly, a global synchronization is carried out
to guarantee the completion of the communications.

3 EVALUATION
Our experiments are conducted on the Sunway TaihuLight su-
percomputer. The Sunway TaihuLight has total 40,960 computing
nodes. The architecture of the computing node has been introduced
in Section 2.1.2. For a core group, there is total 8 GB DDR3 mem-
ory shared by a master core and 64 slave cores. Both master and
slave cores work at 1.45GHz and support 256-bit vector instructions.
Each master core has a 32 KB L1 cache and a 256 KB L2 cache, and
each slave core has a 64 KB local store. The software environment
of the system includes the customized 64-bit Linux kernel, and
Sunway compiler version 5.4 supporting C/C++, Fortran, OpenMP,
and OpenACC. The 𝐴𝑡ℎ𝑟𝑒𝑎𝑑 multithreading library is provided to
program on slave cores, and MPI library is provided for inter-node
communication. In the experiments, we use the microscopic dam-
age simulation for the Fe metal material at 600K temperature under
the environment of irradiation. We demonstrate our application,
implemented as the coupled MD-KMC model, achieves good per-
formance and scalability on the Sunway TaihuLight supercomputer.
It is unfair to compare the performance of our solution with the
existing software (such as LAMMPS and SPPARKS) directly. The
reasons include : (1) The existing software is not optimized for

6

Sunway architecture. (2) Our KMC implementation supports EAM
potential and scales up to 100,000 processes; on the contrary, the
existing parallel scalable software, like SPPARKS, does not support
EAM potential.

0

50

100

150

200

250

300

350

65 130 260 520 1040

To
ta

l r
u

n
ti

m
e

(s
ec

o
n

d
)

Number of cores (master+slave cores)

TraditionalTable

CompactedTable

CompactedTable + DataReuse

CompactedTable + DataReuse + DoubleBuffer

Figure 9: Performance comparisons for the optimizations
of MD with 2 ∗ 107 atoms on Sunway many-core machines.

0%

20%

40%

60%

80%

100%

1

2

4

8

16

32

64

Pa
ra

lle
l

Ef
fi

ci
en

cy

Sp
ee

d
u

p

Number of cores (MPEs + CPEs)

Ideal Speedup
MD
Parallel Efficiency

Figure 10: Strong scaling of MD with 3.2 ∗ 1010 atoms using
both master and slave cores.

0

50

100

150

200

250

300

350

400

450

To
ta

l r
u

n
ti

m
e

(s
ec

o
n

d
)

Number of cores (master+slave cores)

Computation time

Communication time
80.1%

86.7%
95.1% 90.7% 88.4% 85.0%

Figure 11: Weak scaling of MD using both master and slave
cores, 3.9 ∗ 107 atoms per core group. Parallel efficiency is
annotated on the top of the bar.

Firstly, we evaluate the optimization methods for reducing the
data transfer cost between the main memory and the local store

discussed in Section 2.1.2. We test the MD simulation with 2 ∗ 107
atoms using different numbers of cores as shown in Figure 9. Com-
pared with the traditional interpolation tables, the compacted tables
improve the performance by 54.7% on average in geometric mean.
This is because using the compacted table significantly reduces the
number of DMA operations. Ghost data reuse further improves the
performance by 4% on average. However, double buffer does not
bring obvious performance improvement, since there is not enough
computation to overlap the data transfer.

Figure 10 shows the strong scaling test for our optimized MD
simulation with 3.2 ∗ 1010 atoms. For MD, the master cores are
responsible for inter-node communication and the slave cores are
responsible for the EAM computation. We can see that the parallel
efficiency gradually decreases as the increasing of the computing
resources, which is caused by the communication overhead. Scaling
from 97, 500 cores to 6, 240, 000 cores, we achieve 26.4-fold speedup
(41.3% parallel efficiency). Figure 11 shows the weak scaling test for
our optimized MD simulation. As we increase the number of cores
from 104, 000 (including 1, 600 master cores and 1, 024, 000 slave
cores) to 6, 656, 000 (including 102, 400 master cores and 6, 553, 600
slave cores), the problem size increases from 6.25 ∗ 1010 atoms
to 4.0 ∗ 1012 atoms to keep the workload per core fixed. Our MD
code scales up to 6.656 million cores with total 4.0 ∗ 1012 atoms
by a 85% parallel efficiency. Using the traditional data structures
(such as neighbor list), we only simulate about 8.0 ∗ 1011 atoms on
6.656 million cores. The lower memory consumption of our lattice
neighbor list structure contributes to a much larger spatial scale of
MD. We can see that the computation time remains almost constant
on different numbers of cores. However, the communication time
for larger number of cores is a little higher, which is caused by the
communication contention. The communication time on 208, 000
cores is a little higher than others, which is probably caused by the
processes topology mapping. Overall, our MD code exhibits good
strong and weak scalability.

0

100

200

300

400

16 32 64 128 256 512 1024

C
o
m
m
u
n
ic
at
io
n
 v
o
lu
m
e
(M

B
)

Number of cores (only master cores)

Traditional ghost data exchange

On‐demond communication

Figure 12: Communication volume comparison for KMC
with 1.6 ∗ 107 sites using only master cores, vacancy concen-
tration is 4.5 ∗ 10−5.

Figure 12 presents the communication volume comparison be-
tween the on-demand communication strategy for KMC and the
traditional ghost data exchange method (used in SPPARKS [23] and
KMCLib [14]). The experiments are conducted on different number

7

0

1

2

3

4

5

6

7

16 32 64 128 256 512 1024

C
o
m
m
u
n
ic
at
io
n
 t
im

e
(s
ec
o
n
d
)

Number of cores (only master cores)

Traditional ghost data exchange

On‐demond communication

Figure 13: Communication time comparison for KMC with
1.6∗107 sites using onlymaster cores, vacancy concentration
is 4.5 ∗ 10−5.

0%

20%

40%

60%

80%

100%

120%

1

2

4

8

16

32

64

Pa
ra

lle
l

ef
fi

ci
en

cy

Sp
ee

d
u

p

Number of cores (only master cores)

Ideal speedup
KMC
Parallel efficiency

Figure 14: Strong scaling of KMC with 3.2 ∗ 1010 sites using
only master cores, vacancy concentration is 4.5 ∗ 10−5.

0

50

100

150

200

250

300

350

400

450

To
ta

l r
u

n
ti

m
e

(s
ec

o
n

d
)

Number of cores (only master cores)

Computation time

Communication time

97.2%
88.1% 86.1% 85.2%

79.9%
74.0%

Figure 15: Weak scaling of KMC using only master cores,
107 sites per core, vacancy concentration is 2 ∗ 10−6. Parallel
efficiency is annotated on the top of the bar.

of cores (only master cores are used). The on-demand communi-
cation strategy reduces the communication volume to 2.6% of the
traditional method on average. This is because the vacancy con-
centration is very low and only a few sites in the ghost region are
updated after each time step. Figure 13 presents the communication
time comparison between the on-demand communication strat-
egy and the traditional ghost data exchange method. Compared

0

100

200

300

400

500

600

97,500 390,000 1,560,000 6,240,000

To
ta

l r
u

n
ti

m
e

(m
in

u
te

)

Number of cores (master+slave cores)

98.9%

77.4% 75.7%

Figure 16: Weak scaling of the coupled MD-KMC approach
using both master and slave cores, 3.3 ∗ 105 atoms per core
group. Parallel efficiency is annotated on the top of the bar.

with the traditional method, the on-demand communication strat-
egy obtains 21x speedup on average in terms of communication
time. Figure 14 presents the strong scaling test for KMC, in which
only master cores are used. The baseline runs on 1, 500 cores with
3.2 ∗ 1010 sites. Our KMC algorithm exhibits 18.5-fold speedup on
48, 000 cores, indicating 58.2% parallel efficiency in strong scaling.
The super-linear speedup from 3, 000 to 12, 000 cores is due to the
benefit of L2 cache on the master cores, which can store the entire
dataset. However, with the number of cores increasing, the com-
munication cost becomes the major limitation. Figure 15 shows the
weak scaling test for KMC in which only master cores are used. We
keep 107 sites per core as the number of cores increases from 1, 600
to 102, 400. We observe that the computation time remains almost
constant while the communication time increases gradually. The
increased communication time is due to the collective operations
used for time synchronization. Our KMC code scales up to 102, 400
cores with 74% parallel efficiency. Our KMC code exhibits good
strong and weak scalability.

We also present the weak scaling results for the coupled MD-
KMCmodel in Figure 16. The number of cores increases from 97, 500
to 6, 240, 000 while the number of atoms increases from 5.0 ∗ 108
to 3.2 ∗ 1010. The results show that our coupled MD-KMC model
achieves good weak scalability, and attains 75.7% parallel efficiency
on 6, 240, 000 cores.

Furthermore, in order to demonstrate the ability of the coupled
MD-KMC model to simulate at large spatio-temporal scale, we con-
duct a simulation of microscopic damage evolution in Fe material
with 3.2 ∗ 1010 atoms on 6, 240, 000 cores. The lattice constant is
set to 2.855. MD simulates the defect generation caused by cascade
collision in the temporal scale of 50 picoseconds (time step is set
to 1 femtosecond), and outputs the coordinates of vacancy and
the information of atoms. KMC continues to simulate the vacancy
clustering and evolution in the temporal scale of days. The tempo-
ral scale (real time) of KMC simulation can be calculated by the
formula 𝑡𝑟𝑒𝑎𝑙 = 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐶

𝑀𝐶
𝑣 /𝐶𝑟𝑒𝑎𝑙𝑣 [2]. Here, 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the

threshold for the time steps, 𝐶𝑀𝐶
𝑣 is the vacancy concentration in

the simulation box, and 𝐶𝑟𝑒𝑎𝑙𝑣 is the real vacancy concentration in
the experiment. 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is set to 0.0002.𝐶𝑀𝐶

𝑣 is 0.000002, which is
easily obtained by calculating the percentage of vacancies in atoms.
𝐶𝑟𝑒𝑎𝑙𝑣 is obtained by 𝐶𝑟𝑒𝑎𝑙𝑣 = 𝑒𝑥𝑝 (−𝐸+𝑣 /𝐾𝐵 𝑇), where 𝐸+𝑣 is vacancy

8

(a) The distribution of vacancies after MD (b) The distribution of vacancies after KMC

Figure 17: The simulation results for 3.2 ∗ 1010 atoms in 19.2 days temporal scale. The white points represent vacancies.

formation energy, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is set to
600K. After calculation, the temporal scale 𝑡𝑟𝑒𝑎𝑙 is equal to 19.2
days. The total runtime of the application on 6, 240, 000 cores is 8.6
hours. The simulation results are shown in Figure 17, in which only
the vacancies are shown. The evolution of the system after MD
simulation is shown in Figure 17(a), from which we can see that
the vacancies are very dispersive. The evolution of the system after
KMC simulation is shown in Figure 17(b), from which we can see
the vacancies are relatively more aggregative and several vacancy
clusters are forming.

4 RELATEDWORK
Molecular dynamics simulation has been intensively studied in ma-
terials computing. There are different kinds of parallel software for
large-scale MD simulation, such as LAMMPS [22], ls1-MarDyn [19],
IMD [27], and CoMD [8]. LAMMPS [22] is a widely used MD simu-
lator, which supports simulation in solid-state and soft materials. It
supports various platforms, such as CPUs, GPUs, and Xeon Phi, and
uses MPI to scale across nodes. LAMMPS adopts the neighbor list
structure to record the interaction atoms within cutoff radius. IMD
[27] is a software package designed for classical MD simulations,
which allows the particles to interact via pair and multi-body po-
tentials. In 1997 and 1999, IMD had twice held the MD world record
by simulating 5 ∗ 109 particles focusing on multi-body potentials.
Ls1-MarDyn [19] is designed to simulate homogeneous and het-
erogeneous fluid systems containing large numbers of molecules.
It focuses on rigid molecules, and only constant-volume ensem-
bles are supported. Ls1-MarDyn held the world record of 2014 by
simulating 4.125 ∗ 1012 single-site Lennard-Jones (LJ) particles on
the SuperMUC system. CoMD [8] is a parallel software for a broad
class of molecular dynamics simulations, which supports LJ and
EAM potentials. IMD, ls1-MarDyn, and CoMD use the linked cell
structure to record the neighbor atoms. Different from the main-
stream software, we design the lattice neighbor list structure to
reduce memory consumption.

Streitz et al. [28] applied the developed ddcMD code to simulate
the first atomic-scale model of metal solidification, and achieved
103 TFlops performance on a BlueGene/L machine. Swaminarayan
et al. [7] rewrote SPaSM code for the heterogeneous Roadrunner
supercomputer. They performed a standard LJ potential benchmark

and achieved 369 Tflops performance in double precision. Höhner-
bach et al. [10] optimized the Tersoff potential by vectorization, and
obtained good performance on different architectures. Dong et al.
[5] transplanted the Tersoff potential computation in LAMMPS on
the Sunway TaihuLight supercomputer and optimized the perfor-
mance by vectorization, which achieved good parallel efficiency for
up to 108 particles. Hu et al. [12] discussed the multi-threading and
SIMD optimizations for molecular dynamics simulation on Intel
Xeon Phi.

For KMC, Shim et al. [26] presented a semirigorous synchro-
nous sublattice algorithm for parallel KMC simulation based on
domain decomposition. Nandipati et al. [18] carried out realistic
parallel KMC simulations of Ag(111) island coarsening using a large
database. KMCLib [14] is designed to facilitate the implementation
of customized KMC models. For better load balancing, KMClib
would re-match the sites with the processes at each step, which
makes it less efficient when running on a large number of processes.
SPPARKS [23] defines three kinds of Monte Carlo models and facili-
tates the implementation of customized KMC models. For the Potts
model using pair potentials, SPPARKS has been proven to achieve
excellent scalability on thousands processors [21]. Wu et al. [30, 31]
discussed the communication optimizations for SPPARKS using
neighborhood collectives and shared-memory communication. Dif-
ferent from the existing work, we propose an on-demand commu-
nication strategy for KMC, which significantly reduces the commu-
nication volume. Jiménez et al. [13] proposed a GPU-based OKMC
algorithm for the simulation of defects evolution in irradiated ma-
terials. Morishita et al. [16] proposed a coupled MD-KMC model to
simulate the helium-vacancy clusters in Fe.

5 CONCLUSION
We design a scalable coupled MD-KMC algorithm to simulate the
microscopic damage of metal material in BCC structure. Many-body
potential, EAM, is used as physical interaction. MD simulates the
vacancy generation caused by cascade collision in 50 picoseconds.
The connected AKMC approach extends the temporal scale of the
simulation to weeks. The algorithm is implemented and optimized
on the Sunway TaihuLight supercomputer. For MD, we simulate
4 ∗ 1012 atoms on 6,656,000 master+slave cores with 85% paral-
lel efficiency (weak scaling). Strong scaling tests for MD show it

9

simulates 3.2 ∗ 1010 atoms on 6,240,000 master+slave cores with
41.3% parallel efficiency. Using the coupled MD-KMC approach, we
simulate 3.2 ∗ 1010 atoms in 19.2 days temporal scale on 6,240,000
master+slave cores with runtime of 8.6 hours. The simulation re-
sults successfully reveal the vacancy cluster phenomenon.

Although the algorithm is implemented on the Sunway Taihu-
Light supercomputer, our optimization methods are not hardware-
specific. The proposed lattice neighbor list structure for MD pro-
vides a valuable reference for metal materials simulations if their
spatial scale is limited by thememory consumption. The on-demand
communication strategy for KMC are also useful on other big ma-
chines if its communication overhead hinders the scalability with
the increasing of the computation nodes. Potential table compaction,
ghost data reuse, and double buffer strategies would contribute to
performance improvement on heterogeneous architectures where
the data transfer overhead between main memory and local store
is the bottleneck.

MD and KMC are typically considered as computation-intensive.
However, their computation features, such as potential computation
based on interpolation table and frequent global synchronization,
make it not easy to scale up even on the state-of-the-art super-
computer. Although our software optimizations have alleviated the
above problems to some extent, we also come up with some sug-
gestions to solve the problems from the system perspective. For ex-
ample, the high-performance register communication is supported
to overcome the problems caused by the shortage of local memory.
However, the register communication interfaces work similarly to
the MPI two-sided communication, which makes them difficult to
describe irregular data transfers (i.e., dynamically changing data
access patterns), like loading the data in the interpolation tables
in MD. Thus, efficient one-sided register communication, which
facilitates the describing of irregular data transfers, is a promising
alternative.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Founda-
tion of China under Grant No. 61502450, Grant No. 61432018, and
Grant No. 61521092; National Key R&D Program of China under
Grant No. 2017YFB0202302, Grant No. 2016YFE0100300, and Grant
No. 2016YFB0200800.

REFERENCES
[1] CS Becquart and C Domain. 2010. Introducing chemistry in atomistic kinetic

Monte Carlo simulations of Fe alloys under irradiation. physica status solidi (b)
247, 1 (2010), 9–22.

[2] Nicolas Castin, Maria Ines Pascuet, and Lorenzo Malerba. 2011. Modeling the
first stages of Cu precipitation in 𝛼-Fe using a hybrid atomistic kinetic Monte
Carlo approach. The Journal of chemical physics 135, 6 (2011), 064502.

[3] George Chrysos. 2014. Intel® Xeon Phi™ coprocessor-the architecture. Intel
Whitepaper 176 (2014).

[4] Murray S Daw and Michael I Baskes. 1984. Embedded-atom method: Derivation
and application to impurities, surfaces, and other defects in metals. Physical
Review B 29, 12 (1984), 6443.

[5] Wenqian Dong, Letian Kang, Zhe Quan, Kenli Li, Keqin Li, Ziyu Hao, and Xiang-
Hui Xie. 2016. Implementing Molecular Dynamics Simulation on Sunway Taihu-
Light System. In High Performance Computing and Communications; IEEE 14th
International Conference on Smart City; IEEE 2nd International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), 2016 IEEE 18th International
Conference on. IEEE, 443–450.

[6] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song, Xiaomeng
Huang, Chao Yang, Wei Xue, Fangfang Liu, Fangli Qiao, et al. 2016. The Sunway

TaihuLight supercomputer: system and applications. Science China Information
Sciences 59, 7 (2016), 072001.

[7] Timothy C Germann, Kai Kadau, and Sriram Swaminarayan. 2009. 369 Tflop/s
molecular dynamics simulations on the petaflop hybrid supercomputer ‘Road-
runner’. Concurrency and Computation: Practice and Experience 21, 17 (2009),
2143–2159.

[8] Riyaz Haque, Sam Reeve, Luc Juallmes, Sameer Abu Asal, Aaron Landmehr,
Sanian Gaffer, Gheorghe Teodor Bercea, and Zach Rubinstein. 2014. CoMD Imple-
mentation Suite in Emerging Programming Models. Technical Report. Lawrence
Livermore National Laboratory (LLNL), Livermore, CA (United States).

[9] Roger W Hockney and James W Eastwood. 1988. Computer simulation using
particles. crc Press.

[10] Markus Höhnerbach, Ahmed E. Ismail, and Paolo Bientinesi. 2016. The Vectoriza-
tion of the Tersoff Multi-body Potential: An Exercise in Performance Portability.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’16). IEEE Press, Piscataway, NJ, USA, Article
7, 13 pages.

[11] Changjun Hu, He Bai, Xinfu He, Boyao Zhang, Ningming Nie, Xianmeng Wang,
and Yingwen Ren. 2017. Crystal MD: The massively parallel molecular dynamics
software for metal with BCC structure. Computer Physics Communications 211
(2017), 73–78.

[12] Changjun Hu, Xianmeng Wang, Jianjiang Li, Xinfu He, Shigang Li, Yangde Feng,
Shaofeng Yang, and He Bai. 2017. Kernel optimization for short-range molecular
dynamics. Computer Physics Communications 211 (2017), 31–40.

[13] F Jiménez and CJ Ortiz. 2016. A GPU-based parallel object kinetic Monte Carlo
algorithm for the evolution of defects in irradiated materials. Computational
Materials Science 113 (2016), 178–186.

[14] Mikael Leetmaa and Natalia V Skorodumova. 2014. KMCLib: A general frame-
work for lattice kinetic Monte Carlo (KMC) simulations. Computer Physics
Communications 185, 9 (2014), 2340–2349.

[15] Ignacio Martin-Bragado, Antonio Rivera, Gonzalo Valles, Jose Luis Gomez-Selles,
and María J Caturla. 2013. MMonCa: An Object Kinetic Monte Carlo simula-
tor for damage irradiation evolution and defect diffusion. Computer Physics
Communications 184, 12 (2013), 2703–2710.

[16] Kazunori Morishita, Ryuichiro Sugano, and BD Wirth. 2003. MD and KMC
modeling of the growth and shrinkage mechanisms of helium–vacancy clusters
in Fe. Journal of nuclear materials 323, 2 (2003), 243–250.

[17] MPI Forum. 2012. MPI: A Message-Passing Interface standard. Version 3.0.
[18] Giridhar Nandipati, Yunsic Shim, Jacques G Amar, Altaf Karim, Abdelkader Kara,

Talat S Rahman, and Oleg Trushin. 2009. Parallel kinetic Monte Carlo simu
ations of Ag (111) island coarsening using a large database. Journal of Physics:
Condensed Matter 21, 8 (2009), 084214.

[19] Christoph Niethammer, Stefan Becker, Martin Bernreuther, Martin Buchholz,
Wolfgang Eckhardt, Alexander Heinecke, Stephan Werth, Hans-Joachim Bun-
gartz, Colin W Glass, Hans Hasse, et al. 2014. ls1 mardyn: The massively parallel
molecular dynamics code for large systems. Journal of chemical theory and
computation 10, 10 (2014), 4455–4464.

[20] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and
James C Phillips. 2008. GPU computing. Proc. IEEE 96, 5 (2008), 879–899.

[21] Steve Plimpton, Corbett Battaile, Mike Chandross, Liz Holm, Aidan Thompson,
Veena Tikare, Greg Wagner, E Webb, X Zhou, C Garcia Cardona, et al. 2009.
Crossing the mesoscale no-man’s land via parallel kinetic Monte Carlo. Sandia
Report SAND2009-6226 (2009).

[22] Steve Plimpton, Paul Crozier, and Aidan Thompson. 2007. LAMMPS-large-scale
atomic/molecular massively parallel simulator. Sandia National Laboratories 18
(2007).

[23] S Plimpton, A Thompson, and A Slepoy. 2010. SPPARKS kinetic Monte Carlo
simulator.

[24] Joshua M Pomeroy, Joachim Jacobsen, Colin C Hill, Barbara H Cooper, and
James P Sethna. 2002. Kinetic Monte Carlo–molecular dynamics investigations
of hyperthermal copper deposition on Cu (111). Physical Review B 66, 23 (2002),
235412.

[25] Dennis C Rapaport, Robin L Blumberg, Susan R McKay, Wolfgang Christian, et al.
1996. The art of molecular dynamics simulation. Computers in Physics 10, 5
(1996), 54–58.

[26] Yunsic Shim and Jacques G Amar. 2005. Semirigorous synchronous sublattice al-
gorithm for parallel kinetic Monte Carlo simulations of thin film growth. Physical
Review B 71, 12 (2005), 125432.

[27] J Stadler, R Mikulla, and H-R Trebin. 1997. IMD: a software package for molecular
dynamics studies on parallel computers. International Journal of Modern Physics
C 8, 05 (1997), 1131–1140.

[28] Frederick H Streitz, James N Glosli, Mehul V Patel, Bor Chan, Robert K Yates,
Bronis R de Supinski, James Sexton, and John A Gunnels. 2005. 100+ TFlop solidi-
fication simulations on BlueGene/L. In Proceedings of IEEE/ACM Supercomputing,
Vol. 5.

[29] Angela Violi, Adel F Sarofim, and Gregory A Voth. 2004. Kinetic Monte Carlo–
molecular dynamics approach to model soot inception. Combustion science and
technology 176, 5-6 (2004), 991–1005.

10

[30] Baodong Wu, Shigang Li, and Yunquan Zhang. 2015. Optimizing Parallel Kinetic
Monte Carlo Simulation by Communication Aggregation and Scheduling. In
National Conference on Big Data Technology and Applications. Springer, 282–297.

[31] Baodong Wu, Shigang Li, Yunquan Zhang, and Ningming Nie. 2017. Hybrid-
optimization strategy for the communication of large-scale Kinetic Monte Carlo

simulation. Computer Physics Communications 211 (2017), 113–123.
[32] Haixuan Xu, Yuri N Osetsky, and Roger E Stoller. 2012. Self-evolving atomistic

kineticMonte Carlo: fundamentals and applications. Journal of Physics: Condensed
Matter 24, 37 (2012), 375402.

11

	Abstract
	1 Introduction
	2 A Coupled MD-KMC Approach
	2.1 Molecular Dynamics
	2.2 Kinetic Monte Carlo

	3 Evaluation
	4 Related Work
	5 Conclusion
	Acknowledgments
	References

