
1

Massively Scaling the Metal Microscopic Damage Simulation on Sunway
TaihuLight Supercomputer

Shigang Li, Baodong Wu, Yunquan Zhang
SKL Computer Architectures

Institute of Computing Technology, Chinese Academy of Sciences

Xianmeng Wang, Jianjiang Li, Changjun Hu
University of Science and Technology Beijing

Jue Wang, Yangde Feng, Ningming Nie
Computer Network Information Center, Chinese Academy of Sciences

The 47th International Conference on Parallel Processing, ICPP 2018
August 13-16, University of Oregon, Eugene, Oregon, USA

ONTENTSC

Introduction

MD optimization

KMC optimization

Performance evaluation

Conclusion and future work

3

Molecular Dynamics (MD)

Molecular Dynamics

A thermodynamic calculation

method based on the theory of

Newtonian mechanics.

Based on solving the equations of

motion of all the particles in the

system, thermodynamic quantities

and other macroscopic properties

of system can be obtained.

Application fields

MD simulation has been widely

used in various fields of physical,

chemical, biological, materials,

medicine, etc.

We aim at the simulation of Metal

Microscopic Damage under the

environment of irradiation. We

use MD to simulate the defect

generation caused by cascade

collision.

Simulation scales

Temporal Scale:

Since the time step of MD is very

short (typically at femtosecond

scale), the temporal scale of MD

simulation is generally limited to

nanoseconds or less.

Spatial Scale:

Up to 1012 atoms as far as we

know (Ls1-MarDyn).

There is still a big gap between

simulation results and physical

phenomena due to the limitation

of simulation scales.

4

Kinetic Monte Carlo, KMC

A very popular algorithm to

simulate the dynamics of

stochastic process.

It is an efficient tool for exercising

the combined actions of

fundamental, stochastic, and

physical mechanisms.

Application fields

KMC has been widely applied in

the simulations of materials micro-

damage, grain growth, and film-

forming.

In our simulation, we use KMC

to simulate the defect evolution

and vacancies clustering.

Simulation scales

Temporal Scale:

Simulate in the unit of “event”,

rather than “time step”. Thus, the

temporal scale can go up to days

or more.

Spatial Scale:

Commonly larger than the

spatial scale of MD.

Kinetic Monte Carlo (KMC)

5

KMC

✓ Stochastic Process

✓ Non-deterministic

method

✓ Sampling method for

large temporal scale

✓ Need all diffusion barrier a

priori.

✓ KMC steps in REAL TIME

and ALL EVENTS accept.

MD

✓ F=ma

✓ Deterministic method

✓ Real dynamics

✓ Many realistic processes

are in accessible.

✓ Time step is very short,

and thus very high

computation complexity.

MD vs KMC

6

Issues

A single model usually only performs well

at a narrow temporal and spatial range.

For example, MD commonly simulates

millions to billions of atoms at picoseconds to

nanoseconds.

Large-scale simulation has high computation

complexity and requires a great amount of

computing resources. Although the

supercomputers are becoming more powerful,

the existing software lag behind because of the

high effort of code porting and optimization on

new machines.

Solutions

1

2

We use a coupled MD-KMC approach

intending to achieve both high temporal and

spatial scales.

1

We optimize our coupled MD-KMC code on

Sunway TaihuLight supercomputer, and resort

to its rich computing resources to conduct large-

scale microdamage simulation.

3

MD simulates the defect generation caused

by collision cascades, and outputs the

coordinates of vacancy and the information of

atoms. KMC simulates the defect evolution

and clustering.

2

A coupled MD-KMC approach

ONTENTSC

Introduction

MD optimization

KMC optimization

Performance evaluation

Conclusion and future work

8

➢The simulation is based on the interactions whose range is comparatively short,

namely short-range forces. Thus, only the atoms within a specific cutoff

radius interact with the central atom.

➢Two data structures are commonly used to find the neighbor atoms for MD:

neighbor list and linked cell, i.e. LAMMPS uses neighbor list and IMD uses

linked cell structure.

Neighbor list establishment for MD

9

1. Each atom maintains a list to store all the

neighbor atoms within a distance which is

equal to the cutoff radius plus a skin distance.

2. The memory consumption of neighbor list is

costly.

3. O(N2) complexity for each iteration of update.

4. The neighbor atoms should be updated after

several time steps.

1. Linked cell divides the simulation box into cubic

cells, whose edge length is equal to the cutoff

radius.

2. Linked cell ensures that all interaction partners for

any given atom are located either within the cell of

itself or the surrounding neighbor cells.

3. O(NNc) complexity for each iteration of update,

where Nc is the average number of particles in

each cell and Nc<<N.

4. Linked cell should update the atoms within each

cell at each time step, which leads to poor

computation efficiency.

Neighbor list Linked cell

Neighbor list establishment for MD

10

A novel lattice neighbor list data structure

In the simulation only a few atoms break the constrain and run away from the

lattice point. According to this phenomena, we propose a new data structure,

called lattice neighbor list to store the atoms.

The structure of body-centered cubic.

11

✓ We rank the atoms in the order of their spatial

distribution. The information of the atoms is

sequentially stored in an array in the order of the

atoms ranks.

✓ It’s easy to calculate the indexes of the neighbor atoms

in the array for a central atom.

✓ All the possible neighbor atoms of atom 9 are within

the black box.

✓ For each central atom, the offsets of the neighbor

atoms relative to the central atom are the same.

2

1

A novel lattice neighbor list data structure

12

We use the linked list structure to store the run-

away atoms.

✓ When an atom runs away from the lattice point,

it generates a vacancy.

✓ We allocate another memory space to store the

information of the run-away atom, and leave the

original entry in the array to record the

coordinates of the vacancy.

✓ The run-away atom is linked to its nearest

neighbor atom.

3

Overall, compared with the traditional neighbor list and linked cell structures, our lattice neighbor list

structure significantly reduces the memory and computation cost, since it does not have to maintain

the extra structures and finds most of the neighbor atoms by static indexes.

A novel lattice neighbor list data structure

13

Cores: 10,649,600

Linpack Performance (Rmax) 93,014.6 TFlop/s

Theoretical Peak (Rpeak) 125,436 TFlop/s

Nmax 12,288,000

Memory: 1,310,720 GB

Processor: Sunway SW26010 1.45GHz

Many-core architecture 4 CGs(each CG 1MPE+8*8CPEs)

Slave core 64KB local store

Sunway SW26010 many-core architecture

Sunway TaihuLight Supercomputer

Sunway many-core processor

14

a) The interpolation table is used to calculate the EAM

potential.

b) Each traditional interpolation table is a 5000*7 2D array in

double precision.

c) The table is about 273 KB, which exceeds the size of local

store (64 KB) on each slave core. Thus, frequent DMA

operations are necessary.

The compacted interpolation table (size: 5000*1)

A. We only load the compacted table (39 KB) into the local

store at one time.

B. The final value is calculated online using a specific

interpolation formula (cubic spline interpolation).

C. The memory consumption is reduced by 7 folds, although

higher computation complexity.

Compacted interpolation table and online interpolation

The traditional interpolation table (size: 5000*7)

15

Reduce the overhead of atom information transfer

Since our simulation has large spacial scale, the atoms information of one slab cannot be loaded
into the local store at one time either. To reduce the overhead of atoms information transfer, we
propose two methods:

(1) Ghost data reuse

For the atoms information of one block, the data on the edge of the block is actually the ghost data for the next block.

Thus, we keep the ghost data in the local store and reuse it in the next block, which reduces the overhead of data

transfer to some extent.

(2) Double buffer

Each slave core allocates two buffers on local store for the input and output data of each block. While carrying

out DMA put or get on one buffer, it computes the potential or force on the other buffer, and vice versa. The

data transfer and computation are overlapped.

ONTENTSC

Introduction

MD optimization

KMC optimization

Performance evaluation

Conclusion and future work

17

Kinetic Monte Carlo

1. Initialize the simulation lattice, sites (atoms

and vacancies) data.

2. Calculating the transition probability for the

events, generate a random number to select

an event to occur.

3. Perform the event, exchange sites data,

update the transition probability。

4. Accumulate dt to t, and determine whether

to end conditions (whether t reaches the

threshold).

The flowchart of

KMC algorithm.

18

The algorithm is parallelized based on

domain decomposition.

The simulation domain is a 3d box, consists of

many lattice sites.

For 3D simulation box, processes are arranged

to 3d topology to minimize surface area of each

subdomain.

The parallel KMC algorithm

19

Optimization approach

✓ Shared-memory communication

✓ On-demand communication strategy

Communication overhead is the performance

bottleneck

✓ The proportion of communication time raises rapidly.

✓ Communication congestion.

✓ Communication redundancy.

Communication optimization for parallel KMC

20

✓ The number of cores per intra-node has been increasing

rapidly.

✓ Shared-memory method has a less memory copies than

the traditional intra-node point-to-point communication.

✓ Reducing the memory copy overhead of the intra-node

communication.

✓ We choose to use the MPI_Win_allocate_shared and

MPI_Win_shared_query functions, which allow us to directly

replace the send and receive operations with memory copies.

We use the latest MPI interfaces to create shared-memory regions for intra-node processes.

The shared region can be directly accessed by the processes.

Shared-Memory optimization for intra-node communication

21

✓ The processor adds the new ghost sites and boundary sites to

the send queue, and packages those sites data which have

the same destination.

✓ Then sends the data of sending queue to the corresponding

neighboring processors using MPI_isend().

✓ Lastly, using MPI Probe to query the message sites and the

receiver can receive the actual message using MPI_recv().

The on-demand communication strategy changes the

traditional static communication pattern to a dynamic

communication pattern, namely the data to be

transferred and the communication object are

determined at runtime according to the simulation

system status. This can eliminate the communication

redundancy.

(a) 2d domain partition for 9
processors

(b) Get the latest ghost sites from
neighbor processes

(c) Put the ghost sites back to
the neighbor processes

(d) On-demand communication

On-demand communication strategy for KMC

ONTENTSC

Introduction

MD optimization

KMC optimization

Performance evaluation

Conclusion and future work

23

Machine name Sunway TaihuLight supercomputer

Processers Sunway SW26010 260C 1.45GHz

OS customized 64-bit Linux kernel

MPI version SWCC Compilers Version 5.421-sw-495

Application Fe metal material

temperature 600K

Number of cores Tens of cores to six million cores

Number of sites 2.0*10^7 to 1.024 * 10^12

Experimental environment

24

Examine the different optimization methods for MD

✓ Firstly, we compare the strong scaling for MD

simulation using each optimization method with

2∗10^7 atoms.

✓ The Compacted Table exhibits much better

performance than traditional table due to less

DMA operations.

✓ Ghost data reuse further improves the performance

by 4% on average.

✓ Double buffer does not bring obvious performance

improvement, since there is not enough computation

to overlap the data transfer.

25

Strong scaling of the optimized MD

✓ We use both master and slave cores to show strong

scaling of our optimized MD simulation method.

✓ Most communication operations are responsible for

the master cores and the main computations are

performed by the slave cores.

✓ Running with 3.2∗10^10 and scaling from 97,500

cores to 6,240,000 cores, we achieve 26.4-fold

speedup or nearly 41.3% parallel efficiency.

26

On-demond communication for KMC

Communication volume comparison. Communication time comparison.

Compared with the traditional method, the on-demand communication strategy obtains 21x speedup on

average in terms of communication time.

27

Strong scaling of the optimized KMC

✓ Next we tests the parallel performance and scalability

of KMC simulations from strong scaling.

✓ The baseline run used 1,500 cores with 3.2∗10^10

sites, our algorithm exhibits 18.5-fold speedup on

48,000 cores, indicating 58.2% parallel efficiency in

strong scaling.

28

Weak scaling of the optimized MD

✓ We perform weak scaling experiments of MD simulation.

✓ As we increase the number of cores from 104,000 (1,600

master cores+1,024,000 slave cores) to 6,656,000 (102,400

master cores+6,553,600 slave cores), the problem size

increases from 6.25∗10^10 to 4.0∗10^12.

✓ The experiment result indicates the MD code scaled up to

6 million cores by a 85% parallel efficiency.

29

Weak scaling of the optimized KMC

✓ The Figure shows the weak scalability results ranging

from 1,600 cores up to 102,400 cores.

✓ We observe that the change of computation time exhibits

a nearly linear, and the communication time has

increased somewhat.

✓ We also see that our optimized KMC code achieves 74%

parallel efficiency over a 64-fold increase in sites size,

from 1,600 cores to 102,400 cores.

30

Weak scaling of the coupled MD-KMC

✓ Lastly, we study the weak scaling of the coupled MD-KMC

with 3.3∗10^5 atoms per core group, and set the number

of simulation atoms to 5.0∗10^8, 2.9∗10^9, 8.0∗10^9 and

3.2∗10^10 running on 97,500, 390,000, 1,560,000 and

6,240,000 cores.

✓ The coupled MD-KMC method achieves very good

scalability, attaining 75.7% parallel efficiency.

31

The simulation results

Furthermore, in order to demonstrate the ability of the coupled MD-KMC approach to perform large spatial scale

and time scale on-lattice applications.

✓ We conducted a simulation of microdamage evolution

in Fe metal material with 3.2∗10^10 atoms on 6,240,000

cores in 19.2 days temporary scale.

✓ The figure shows the distribution of Fe atoms (red) and

vacancies (white) before and after KMC simulation.

✓ The evolution of the system after MD simulation is shown

in Figure (a) and Figure (b).

✓ We can see that after the KMC phase, the vacancies

are relatively more aggregative and vacancy clusters

are forming.

ONTENTSC

Introduction

MD optimization

KMC optimization

Performance evaluation

Conclusion and future work

Conclusion and Future work
33

Conclusion1

Future work2

✓ We implement a scalable MD-KMC algorithm to simulate the

microscopic damage of metal material (Fe) on Sunway

TaihuLight supercomputer.

✓ We achieve excellent parallel scalability and high efficiency for

both algorithms.

✓ To support multiple types of atoms, such as Fe, Cu, Mn, Ni.

✓ To extend our approach to future Exascale Supercomputers,

and simulate in larger spatial-temporal scale for the coupled

model.

Thank You

