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Molecular Dynamics (MD) 

Molecular Dynamics

A thermodynamic calculation 

method based on the theory of 

Newtonian mechanics.

Based on solving the equations of 

motion of all the particles in the 

system, thermodynamic quantities 

and other macroscopic properties 

of system can be obtained.

Application fields 

MD simulation has been widely 

used in various fields of physical, 

chemical, biological, materials, 

medicine, etc.

We aim at the simulation of Metal 

Microscopic Damage under the 

environment of irradiation. We 

use MD to simulate the defect 

generation caused by cascade 

collision.

Simulation scales 

Temporal Scale:

Since the time step of MD is very 

short (typically at femtosecond

scale), the temporal scale of MD 

simulation is generally limited to 

nanoseconds or less.

Spatial Scale:

Up to 1012 atoms as far as we 

know (Ls1-MarDyn).

There is still a big gap between 

simulation results and physical 

phenomena due to the limitation 

of simulation scales.
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Kinetic Monte Carlo, KMC 

A very popular algorithm to 

simulate the dynamics of 

stochastic process.

It is an efficient tool for exercising 

the combined actions of 

fundamental, stochastic, and 

physical mechanisms.

Application fields 

KMC has been widely applied in 

the simulations of materials micro-

damage, grain growth, and film-

forming.

In our simulation, we use KMC 

to simulate the defect evolution 

and vacancies clustering.

Simulation scales 

Temporal Scale:

Simulate in the unit of “event”, 

rather than “time step”. Thus, the 

temporal scale can go up to days 

or more.

Spatial Scale:

Commonly larger than the 

spatial scale of MD. 

Kinetic Monte Carlo (KMC)



5

KMC

✓ Stochastic Process

✓ Non-deterministic 

method

✓ Sampling  method  for 

large temporal scale

✓ Need all diffusion barrier a 

priori.

✓ KMC steps in REAL TIME 

and ALL EVENTS accept.

MD

✓ F=ma

✓ Deterministic method

✓ Real dynamics

✓ Many realistic processes 

are in accessible.

✓ Time step is very short, 

and thus very high 

computation complexity. 

MD  vs KMC
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Issues

A single model usually only performs well 

at a narrow temporal and spatial range. 

For example, MD commonly simulates 

millions to billions of atoms at picoseconds to 

nanoseconds.

Large-scale simulation has high computation 

complexity and requires a great amount of 

computing resources. Although the 

supercomputers are becoming more powerful, 

the existing software lag behind because of the 

high effort of code porting and  optimization on 

new machines. 

Solutions

1

2

We use a coupled MD-KMC approach 

intending to achieve both high temporal and 

spatial scales.

1

We optimize our coupled MD-KMC code on 

Sunway TaihuLight supercomputer, and resort 

to its rich computing resources to conduct large-

scale microdamage simulation.

3

MD simulates the defect generation caused 

by collision cascades, and outputs the 

coordinates of vacancy and the information of 

atoms. KMC simulates the defect evolution 

and clustering.

2

A coupled MD-KMC approach



ONTENTSC

Introduction

MD optimization

KMC optimization

Performance evaluation

Conclusion and future work



8

➢The simulation is based on the interactions whose range is comparatively short, 

namely short-range forces. Thus, only the atoms within a specific cutoff 

radius interact with the central atom.

➢Two data structures are commonly used to find the neighbor atoms for MD: 

neighbor list and linked cell, i.e. LAMMPS uses neighbor list and IMD uses 

linked cell structure.

Neighbor list establishment for MD
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1. Each atom maintains a list to store all the 

neighbor atoms within a distance which is 

equal to the cutoff radius plus a skin distance. 

2. The memory consumption of neighbor list is 

costly. 

3. O(N2) complexity for each iteration of update.

4. The neighbor atoms should be updated after 

several time steps.

1. Linked cell divides the simulation box into cubic 

cells, whose edge length is equal to the cutoff 

radius. 

2. Linked cell ensures that all interaction partners for 

any given atom are located either within the cell of 

itself or the surrounding neighbor cells. 

3. O(NNc) complexity for each iteration of update, 

where Nc is the average number of particles in 

each cell and Nc<<N.

4. Linked cell should update the atoms within each 

cell at each time step, which leads to poor 

computation efficiency.

Neighbor list Linked cell

Neighbor list establishment for MD
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A novel lattice neighbor list data structure 

In the simulation only a few atoms break the constrain and run away from the 

lattice point. According to this phenomena, we propose a new data structure, 

called lattice neighbor list to store the atoms.

The structure of body-centered cubic.
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✓ We rank the atoms in the order of their spatial  

distribution. The information of the atoms is 

sequentially stored in an array in the order of the 

atoms ranks. 

✓ It’s easy to calculate the indexes of the neighbor atoms 

in the array for a central atom.

✓ All the possible neighbor atoms of atom 9 are within 

the black box.

✓ For each central atom, the offsets of the neighbor 

atoms relative to the central atom are the same.

2

1

A novel lattice neighbor list data structure 
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We use the linked list structure to store the run-

away atoms.

✓ When an atom runs away from the lattice point, 

it generates a vacancy.

✓ We allocate another memory space to store the 

information of the run-away atom, and leave the 

original entry in the array to record the 

coordinates of the vacancy.

✓ The run-away atom is linked to its nearest 

neighbor atom.

3

Overall, compared with the traditional neighbor list and linked cell structures, our lattice neighbor list 

structure significantly reduces the memory and computation cost,  since it does not have to maintain 

the extra structures and finds most of the neighbor atoms by static indexes.

A novel lattice neighbor list data structure 
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Cores: 10,649,600

Linpack Performance (Rmax) 93,014.6 TFlop/s

Theoretical Peak (Rpeak) 125,436 TFlop/s

Nmax 12,288,000

Memory: 1,310,720 GB

Processor: Sunway SW26010 1.45GHz

Many-core architecture 4 CGs(each CG 1MPE+8*8CPEs)

Slave core 64KB local store

Sunway SW26010 many-core architecture 

Sunway TaihuLight Supercomputer

Sunway many-core processor
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a) The interpolation table is used to calculate the EAM 

potential.

b) Each traditional interpolation table is a 5000*7 2D array in 

double precision.

c) The table  is about 273 KB, which exceeds the size of local 

store (64 KB) on each slave core. Thus, frequent DMA 

operations are necessary. 

The compacted interpolation table (size: 5000*1)

A. We only load the compacted table (39 KB) into the local 

store at one time.

B. The final value is calculated online using a specific 

interpolation formula (cubic spline interpolation).

C. The memory consumption is reduced by 7 folds, although 

higher computation complexity.

Compacted interpolation table and online interpolation 

The traditional interpolation table (size: 5000*7)
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Reduce the overhead of atom information transfer

Since our simulation has large spacial scale, the atoms information of one slab cannot be loaded 
into the local store at one time either. To reduce the overhead of atoms information transfer, we 
propose two methods:

(1) Ghost data reuse

For the atoms information of one block, the data on the edge of the block is actually the ghost data for the next block. 

Thus, we keep the ghost data in the local store and reuse it in the next block, which reduces the overhead of data 

transfer to some extent.

(2) Double buffer

Each slave core allocates two buffers on local store for the input and output data of each block. While carrying 

out DMA put or get on one buffer, it computes the potential or force on the other buffer, and vice versa. The 

data transfer and computation are overlapped.
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Kinetic Monte Carlo

1. Initialize the simulation lattice, sites (atoms 

and vacancies) data.

2. Calculating the transition probability for the 

events, generate a random number to select 

an event to occur.

3. Perform the event, exchange sites data, 

update the transition probability。

4. Accumulate dt to t,  and determine whether 

to end conditions (whether t reaches the 

threshold).

The flowchart of 

KMC algorithm.
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The algorithm is parallelized based on 

domain decomposition.

The simulation domain is a 3d box, consists of 

many lattice sites. 

For 3D simulation box, processes are arranged 

to 3d topology to minimize surface area of each 

subdomain.

The parallel KMC algorithm



19

Optimization approach

✓ Shared-memory communication

✓ On-demand communication strategy

Communication overhead is the performance 

bottleneck

✓ The proportion of communication time raises rapidly. 

✓ Communication congestion.

✓ Communication redundancy.

Communication optimization for parallel KMC
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✓ The number of cores per intra-node has been increasing 

rapidly.

✓ Shared-memory method has a less memory copies than 

the traditional intra-node point-to-point communication.

✓ Reducing the memory copy overhead of the intra-node 

communication. 

✓ We choose to use the MPI_Win_allocate_shared and 

MPI_Win_shared_query functions, which allow us to directly 

replace the send and receive operations with memory copies.

We use the latest MPI interfaces to create shared-memory regions for intra-node processes. 

The shared region can be directly accessed by the processes. 

Shared-Memory optimization for intra-node communication
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✓ The processor adds the new ghost sites and boundary sites to 

the send queue, and packages those sites data which have 

the same destination.

✓ Then sends the data of sending queue to the corresponding 

neighboring processors using MPI_isend().

✓ Lastly, using MPI Probe to query the message sites and the 

receiver can receive the actual message using MPI_recv().

The on-demand communication strategy changes the 

traditional static communication pattern to a dynamic 

communication pattern, namely the data to be 

transferred and the communication object are 

determined at runtime according to the simulation 

system status. This can eliminate the communication 

redundancy.

(a) 2d domain partition for 9 
processors

(b) Get the latest ghost sites from 
neighbor processes

(c) Put the ghost sites back to 
the neighbor processes

(d) On-demand communication

On-demand communication strategy for KMC
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Machine name Sunway TaihuLight supercomputer

Processers Sunway SW26010 260C 1.45GHz

OS customized 64-bit Linux kernel

MPI version SWCC Compilers Version 5.421-sw-495

Application Fe metal material

temperature 600K

Number of cores Tens of cores to six million cores

Number of sites 2.0*10^7 to 1.024 * 10^12

Experimental environment
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Examine the different optimization methods for MD

✓ Firstly, we compare the strong scaling for MD 

simulation using each optimization method with 

2∗10^7 atoms. 

✓ The Compacted Table exhibits much better 

performance than traditional table due to less 

DMA operations.

✓ Ghost data reuse further improves the performance 

by 4% on average.

✓ Double buffer does not bring obvious performance 

improvement, since there is not enough computation 

to overlap the data transfer.
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Strong scaling of the optimized MD

✓ We use both master and slave cores to show  strong 

scaling of our optimized MD simulation method.

✓ Most communication operations are responsible for 

the master cores and the main computations are 

performed by the slave cores.

✓ Running with 3.2∗10^10 and scaling from 97,500

cores to 6,240,000 cores, we achieve 26.4-fold

speedup or nearly 41.3% parallel efficiency.
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On-demond communication for KMC

Communication volume comparison. Communication time comparison.

Compared with the traditional method, the on-demand communication strategy obtains 21x speedup on 

average in terms of communication time.
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Strong scaling of the optimized KMC

✓ Next we tests the parallel performance and scalability 

of KMC simulations from strong scaling.

✓ The baseline run used 1,500 cores with 3.2∗10^10 

sites, our algorithm exhibits 18.5-fold speedup on 

48,000 cores, indicating 58.2% parallel efficiency in 

strong scaling.
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Weak scaling of the optimized MD

✓ We perform weak scaling experiments of MD simulation.

✓ As we increase the number of cores from 104,000 (1,600

master cores+1,024,000 slave cores) to 6,656,000 (102,400 

master cores+6,553,600 slave cores), the  problem size 

increases from 6.25∗10^10 to 4.0∗10^12.

✓ The experiment result indicates the MD code scaled up to 

6 million cores by a 85% parallel efficiency.
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Weak scaling of the optimized KMC

✓ The Figure shows the weak scalability results ranging 

from 1,600 cores up to 102,400 cores.

✓ We observe that the change of computation time exhibits 

a nearly linear, and the communication time has 

increased somewhat.

✓ We also see that our optimized KMC code achieves 74%

parallel efficiency over a 64-fold increase in sites size, 

from 1,600 cores to 102,400 cores.
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Weak scaling of the coupled MD-KMC

✓ Lastly, we study the weak scaling of the coupled MD-KMC 

with 3.3∗10^5 atoms per core group, and set the number 

of simulation atoms to 5.0∗10^8, 2.9∗10^9, 8.0∗10^9 and 

3.2∗10^10 running on 97,500, 390,000, 1,560,000 and 

6,240,000 cores. 

✓ The coupled MD-KMC method achieves very good 

scalability, attaining 75.7% parallel efficiency.
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The simulation results

Furthermore, in order to demonstrate the ability of the coupled MD-KMC approach to perform large spatial scale 

and time scale on-lattice applications.

✓ We conducted a simulation of microdamage evolution 

in Fe metal material with 3.2∗10^10 atoms on 6,240,000 

cores in 19.2 days temporary scale.

✓ The figure  shows the distribution of Fe atoms (red) and 

vacancies (white) before and after KMC simulation.

✓ The evolution of the system after MD simulation is shown 

in Figure (a) and Figure (b). 

✓ We can see that after the KMC phase, the vacancies 

are relatively more aggregative and vacancy clusters 

are forming.
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Conclusion1

Future work2

✓ We  implement a scalable MD-KMC algorithm to simulate the 

microscopic damage of metal material (Fe) on Sunway 

TaihuLight supercomputer.

✓ We achieve excellent parallel scalability and high efficiency for 

both algorithms.

✓ To support multiple types of atoms, such as Fe, Cu, Mn, Ni.

✓ To extend our approach to future Exascale Supercomputers, 

and simulate in larger spatial-temporal scale for the coupled 

model.
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