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• In the context of image processing, convolution is the scalar 
product of the filter weights with the input pixels within a window 
surrounding each of the output pixels, such as 1D, 2D and multi-
channel 2D convolutions.

• They are widely used in image processing, such as Gaussian filter; 
today’s Deep Learning, such as Convolution Neural Network.

(d) Multi-channel 
2D convolution
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• Convolution operations have high computational and 
memory access complexity.

• Many-core architectures evolve quickly, which 
feature high computational throughput and memory 
bandwidth, like NVIDIA and AMD GPUs, and Intel 
Xeon Phi.

• This paper aims at providing some insights for 
performance optimizations of convolution operations 
on these emerging many-core architectures.

Many-core processors bring opportunity



ICT,  CASOutline

1. Introduction

2. 1D and 2D convolutions

3. Multi-channel 2D convolution

4. Experimental results

5. Conclusions



ICT,  CAS1D and 2D convolutions

We discuss the optimizations in 
the context of OpenCL:

1. A naïve implementation of 1D 
and 2D convolutions is each 
thread is responsible for one 
module and accesses input 
pixels from global memory 
directly.

2. A common optimization is 
utilizing local memory tiling to 
cache the input pixels, which 
reduces the total global 
memory accesses.
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In order to exploit the register-level data reuse, register tiling by 
coarsening the workload of each thread is used.

(a) Register tiling for horizontal 1D convolution
(b) Register tiling for 2D convolution
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Figure (a) is not coalesced 
memory access. 

Figure (b) is coalesced 
memory access.
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Basically, the serial algorithm 
contains total 7 nested for loops.

The outermost 2-level for loops 
iterate on NumImages (i.e. batchsize)
and NumFilters (number of filters), 
respectively.

The inner 5-level for loops, from 
outside to inside, iterate on image 
Height and Width, Channels, 
FilterSize and FilterSize, respectively

A naive method to implement this algorithm in OpenCL is to let each thread 
calculate for one pixel of the output images. 
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1.  Each threads group is 
responsible for calculating 
NumFltrsPerThrd*  
NumImgsPerThrd blocks of the 
output images, which exploits the 
data reuse of the outermost 2-level
for loops, i.e. loop tiling.

2.  Each block of input image is 
loaded into local memory before 
calculating, i.e. local memory tiling, 
which exploits inter-module data 
reuse.

3.  Filters are put in constant 
memory to utilize constant cache.
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For each channel, each thread 
streams in the pixels of  
NumImgsPerThrd images and the 
values of NumFltrsPerThrd filters 
to registers, and then execute the 
convolution on the current channel.
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Register tiling can also be used to 
further exploit the inter-module date 
reuse. As we can see in the figure, 
the workload of each thread is 
coarsened. 



ICT,  CASOutline

1. Introduction

2. 1D and 2D convolutions

3. Multi-channel 2D convolution

4. Experimental results

5. Conclusions



ICT,  CASPerformance results of 1D convolution
All of the codes are implemented in OpenCL. We use AMD W8000 
(3.23TFlops), GTX TITAN (4.5TFlops) and Intel MIC (2.0496TFlops to do the 
experimental analysis.

Horizontal 1D convolutionVertical 1D convolution

1. On AMD W8000 and GTX TITAN, the performance of the naive method 
and local memory tiling is almost equal. This is because that the naïve 
method may benefit from hardware cache.

2. Register tiling greatly improves the performance for both horizontal and 
vertical 1D convolutions on AMD W8000 and GTX TITAN.

3. On Intel MIC, local memory tiling performs much worse, as no real 
hardware support for local memory.
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2D convolution

1. Register tiling, with tiling size of 4*4, usually performs best for AMD 
W8000 and  GTX TITAN.

2. On Intel MIC, register tiling along the vertical dimension with tiling size 
of 4*1, which guarantees consecutive memory access, always 
performs best.
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Optimizations comparison of 
multi-channel 2D convolution

Optimizations comparison of convolution layer on AMD W8000

Using constant memory for filters improves the performance greatly 
on AMD W8000.
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Optimizations comparison of convolution layer on GTX TITAN

We can see that the best performance is obtained after local 
memory tiling. However, the constant memory defined in OpenCL 
doesn’t work for NVIDIA GPUs.

Optimizations comparison of 
multi-channel 2D convolution
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Optimizations comparison of convolution layer on Intel MIC

The best performance is obtained when the register tiling is conducted only 
along the vertical dimension, which guarantees consecutive memory access. 
However, local memory tiling and constant memory for filters don’t work on 
Intel MIC.

Optimizations comparison of 
multi-channel 2D convolution



ICT,  CASCompared with cuDNN-v2

Performance comparison with cuDNN-v2 on GTX TITAN
1. For the large filter size, our solution performs apparently better than cuDNN-

v2, with up to 33% performance improvement. Because our solution fully 
exploits inter-module date reuse.

2. However, our solution performs worse than cuDNN-v2 when the filter size is 
small, which is caused by the low inter-module data reuse rate of small filter 
size.
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Compared with clBLAS+unfold on AMD W8000
clBLAS+unfold follows the same method with the well-known deep learning 
library—CAFFE.
1. Our solution performs apparently better than clBLAS+unfold for large filter 

size, with up to 28% performance improvement.

2. However, our solution performs worse when the filter size is small.
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• For 1D and 2D convolutions, register tiling rather than local 
memory tiling is critical to achieve good performance. And 
different register tiling modes affect the memory access 
efficiency.

• Our solution for multi-channel 2D convolution fully exploits 
inter-module data reuse, and thus gets good performance for 
large filter sizes, up to 33% over cuDNN-v2 and up to 28% 
over clBLAS.

• To improve the performance of multi-channel 2D convolution 
for small filter size is our future work.
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