IIIIIIIIIIIIIII
I

Fast Convolution Operations on Many-Core
Architectures

Reporter: Shigang Li
Affiliation: SKL of Computer Architecture
Institute of Computing Technology, CAS
Email: shigangli.cs@gmail.com

17th International Conference on High Performance Computing and Communications (HPCC'15)

Outline @ ICT, CAS

% 1. Introduction
2. 1D and 2D convolutions
3. Multi-channel 2D convolution
4. Experimental results

5. Conclusions

&y

Different convolution operations ICT, CAS

* In the context of image processing, convolution is the scalar
product of the filter weights with the input pixels within a window
surrounding each of the output pixels, such as 1D, 2D and multi-
channel 2D convolutions.

Filtery Filter, Filters

] ficn fon AR
| - HEen [Hfon T HEcn
(a) Horizontal 1D convolution (1*5) Fch, Eich: = on,
T Gupw T |
Image, |4 I
¢ EJFH/ : Imagep |
_] ‘o ’ Ch~ir |

o | |(d) Multi-channel

o | 12D convolution

| :
|
(b) Vertical 1D (¢) 2D convolution (5*5) , ! !
convolution (5*1) ages1 ! Images, |
Chy | Chy~Chy |
Ch, ! |
I /
Chg ————e e ——— —

 They are widely used in image processing, such as Gaussian filter;
today’s Deep Learning, such as Convolution Neural Network.

Many-core processors bring opportunity@ ICT, CAS

e Convolution operations have high computational and
memory access complexity.

 Many-core architectures evolve quickly, which
feature high computational throughput and memory
bandwidth, like NVIDIA and AMD GPUs, and Intel

Xeon Phi.

* This paper aims at providing some insights for
performance optimizations of convolution operations
on these emerging many-core architectures.

Outline @ ICT, CAS

1. Introduction

7 2. 1D and 2D convolutions
3. Multi-channel 2D convolution
4. Experimental results

5. Conclusions

1D and 2D convolutions

Thread 0
BlckSizeX
=
]
5 Thread
N Group 0
!

convolution (5*1)

We discuss the optimizations in
the context of OpenCL.:

1. A naive implementation of 1D
and 2D convolutions is each
thread is responsible for one
module and accesses input
pixels from global memory
directly.

2. A common optimization is
utilizing local memory tiling to
cache the input pixels, which
reduces the total global
memory accesses.

Register tiling for 1D and 2D convolutions

In order to exploit the register-level data reuse, register tiling by
coarsening the workload of each thread is used.

Thread;q
Threadg

Threads
Thread,

_ N

Y
Private to

Private to
Threadgg Thread,g

% Register tiling

Threadgo

.Y _
Registers Shared
(a) Register tiling for horizontal 1D convolution

Thready, Thready, Thready
A A
Register

tiling RN

' |

| |

| |

N
.Y
Registers Shared

vy
Thread;q Thread;,
(b) Register tiling for 2D convolution

Register tiling affects memory efficiency @ ICT, CAS

Accessed Accessed
by Threadyy by Thready,

%

Thready, Thready,;
(a) Register tiling 2*2

Accessed Accessed

by Thre}doo b}ThreadO |

Threﬂd()() Th-read{)l
(b) Register tiling 4*1

Figure (a) is not coalesced
memory access.

Figure (b) is coalesced
memory access.

Outline @ ICT, CAS

1. Introduction
2. 1D and 2D convolutions

7 3. Multi-channel 2D convolution
4. Experimental results

5. Conclusions

Multi-channel 2D convolution in mini-batch mode @ ICT, CAS

Filtery Filter; Filter;

Chl Ch| Ch|
/_ Chg Chz Chg
¥

Chy Chy Chy

iiiiii

5 (Ouput 1
EEEE :
Image |FHL,
= Ei:if | Image, |
Chol | : Chy~Chy |
Ch|_ : :
Ch, , |
| |
| !
| !
| !
| |
Images, | Imagesy; |
!
Chy : Chy~Chy
Ch, | |
Ch; Y ————— /

Basically, the serial algorithm
contains total 7 nested for loops.

The outermost 2-level for loops
iterate on Numlmages (i.e. batchsize)
and NumfFilters (number of filters),
respectively.

The inner 5-level for loops, from
outside to inside, iterate on image
Height and Width, Channels,
FilterSize and FilterSize, respectively

A naive method to implement this algorithm in OpenCL is to let each thread

calculate for one pixel of the output images.

Optimization details at thread-group level

ICT, CAS

Filterpup Filteryyip+i
Chyg Chy
Ch, Ch;
Ch; Chy
e e T R T T S
Imageimgin :i'r,_, — ! Image;
s ___kg gl’. i = .nmplr)
Chol 7 5 | Z
ch Y= | LY %
L l : BlckSizeX
Ch2 Padding| |
aen : ChﬂlrID' ChﬂlrlD' 1
_'j'i'r ! Imageingin+1
Imageimngﬂ s 'u_u | 0 [
—H :H.“ I
Chyl_ :
Chy | |
Chy ___Chp_ Chap1 _ _

NumFlusPerThrd = 2
NumImgsPerThrd = 2
flirlD = get_global size(0)/Width*NumFltrsPerThrd
imglD = get global size(1)/Height*NumlmgsPerThrd

1. Each threads group is
responsible for calculating
NumFlItrsPerThrd*
NumlmgsPerThrd blocks of the
output images, which exploits the
data reuse of the outermost 2-level
for loops, i.e. loop tiling.

2. Each block of input image is
loaded into local memory before
calculating, i.e. local memory tiling,
which exploits inter-module data
reuse.

3. Filters are put in constant
memory to utilize constant cache.

Optimization details at thread level @ ICT, CAS

Filterqup Filterguip+
Chy Chy; Ch Chy Chy Ch

- Chy For each channel, each thread

— ——— — — — — — — — — —

Imageimgin [l chy 1 Output | streams in the pixels of
=iiile N ' NumImgsPerThrd images and the
. | I values of NumFltrsPerThrd filters
] : g hutsbertdl o registers, and then execute the
i Cho NumlmsperThrd | convolution on the current channel.
Imageimn R Ch, | :

- :Ch2

Register tiling for Multi-channel 2D convolution@ ICT, CAS

F ilterﬂmD F ilterﬂmDﬂ
RB;ECX Cho Ch,; Ch, Chg Ch Ch’*
RBIcky <7 —#—C hy
Imageinen Eigc_\hl T T T T 0O _ufpl_lt_ ~~ 77, Register tiling can.also be used to
i | | further exploit the inter-module date
W Ch, ! HT- vwFlPeTidl reUse. As we can see in the figure,
- | RBIckY | .
| | the workload of each thread is
17 | I
WCh, NunlinsPerThrd | coa rsened.
- I) |
Imageingn+1 WCh, | |
[T1 N v
HCh,

. ICT, CAS
Outline @ ¢

1. Introduction

2. 1D and 2D convolutions

3. Multi-channel 2D convolution
7 4. Experimental results

5. Conclusions

Performance results of 1D convolution @ ICT, CAS

All of the codes are implemented in OpenCL. We use AMD W38000
(3.23TFlops), GTX TITAN (4.5TFlops) and Intel MIC (2.0496TFlops to do the

experimental analysis.

1

12

5
B Naive B Naive mNaive

08 +——— #Localmemorytiing ——m—— 11 Localmemory tiling 4 4 Localmemory tiling

E{) 6 B Eegister tiling (4%1) 2 08 =" mRegister tiling (4*1) — | g 3 B Register tiling (471)
E E 0.6 E .
504 =04 =

| W b
0 —— l_- 0 —_ — 0 —_ — u .
5312%512 1K® lK JEF2ZE 4KMK 512*312 lKll EK 2K 4K*K 512*312 lK*LIni JEFIE 4KMK
Imagesize mage size agesize

(a) Vertical 1D convolution cn AMD W2000

(b) Vertical 1D convolution on GTX TITAN

Horerdiokd | 1D eomvwalitimn

1. On AMD W8000 and GTX TITAN, the performance of the naive method
and local memory tiling is almost equal. This is because that the naive
method may benefit from hardware cache.

2. Register tiling greatly improves the performance for both horizontal and
vertical 1D convolutions on AMD W8000 and GTX TITAN.

3. On Intel MIC, local memory tiling performs much worse, as no real
hardware support for local memory.

(c) Vertical 1D convelotion on Intel MIC

2D convolution

ICT,

CAS

2D convolution

1. Register tiling, with tiling size of 4*4, usually performs best for AMD

W8000 and GTX TITAN.

2. On Intel MIC, register tiling along the vertical dimension with tiling size
of 4*1, which guarantees consecutive memory access, always

performs best.

32 32 40
B Naive W Naive m Naive
74 4—o ¥ Localmemory tiling 7 4 B Localmemory tiling 30 ¥ Localmemory tiling
- B Register tiling (1¥4) - B Register tiling (1¥4) = B Register tiling (1:4)
516 4—— ¥ Register tiling (4*1) =16 W Register tiling (4*1) =20 - M Regster tiling (471)
£ B Register tiling (4%4) "é M Register tiling (4*4) g2- M Register tiling (4*4)
08 “08 10
0 h [' T '] =
512%512 1K*JK 2K*2K 4K™K 512%512 1K*1K 2JK*2K 4K*4K 512%512 1K°1IK ZK*2K 4K™K
agesize Image size Image size
(a) 2D convolution on AMD WS000 (b) 2D convelution on GTX TITAN (c) 2D convelution on Intel MIC

Test scales of convolution layer of CNN @ ICT, CAS

image size | batch size | channels | filters | filter size
Scaleg 128%128 128 3 V6 [3%13
Scale, 128%128 64 8 96 13%13
Scaleo 128%128 64 16 06 13%13
Scales 128128 128 3 96 [1#11
Scale 4 128128 64 8 96 [1#11
Scales, 128%128 64 16 V6 [1#11
Scaleg 1284128 128 96 128 0*9
Scaler 64764 64 96 128 9*9
Scaleg 32%32 64 96 128 9*9
Scaleg 64764 128 128 128 T7#1
Scaleq g 32%32 64 128 128 77
Scaleq 16%16 64 128 128 T*1
Scaleq o 32%32 128 128 384 3%3
Scaleq s 16%16 64 128 384 3%3
Scaleq 4 13713 64 128 384 3%3

Optimizations comparison of
multi-channel 2D convolution ICT, CAS

B Baseline M Loop tiling W Localmemory tiling
B Constantmemory M Register tiling (2*2)
1800

1600
1400
. 1200
21000
= 800
~ 600
400

200
0 pininine
RS SRS IRSE R IROSIENOIE SOy
oS o o o o o o T P P P P
Workload

Optimizations comparison of convolution layer on AMD W8000

Using constant memory for filters improves the performance greatly
on AMD W8000.

Optimizations comparison of
multi-channel 2D convolution

@ ICT, CAS

W Localmemory tiling
B Constantmemory M Register tiling (2*2)

NN

SF D L P D
Workload ST

® Baselne M Looptiling
2000
1500
v
& -
= 1000
O
500 =
0 =
D & oV @ & D
o‘y o‘z"\o o“& o‘h'\o o""'\b o“"\@ P e e
-

‘Optimizations comparison of convolution layer on GTX TITAN

\bt

We can see that the best performance is obtained after local
memory tiling. However, the constant memory defined in OpenCL

doesn’t work for NVIDIA GPUs.

Optimizations comparison of
multi-channel 2D convolution ICT, CAS

B Baselne M Looptiing ¥ Localmemory tiling
B Constantmemory MRegster tiling (4%1)
600
500
L 400
jm
2 300
o
200 -
100 =
0 -
DN DV DD X H LA SO DNV WN™
RN JORONOEOGO
s M ‘::':JH ?Tcgcaﬁ‘bcaﬂ%cpﬁ%%@%ﬂb
orkloa

Optimizations comparison of convolution layer on Intel MIC

The best performance is obtained when the register tiling is conducted only
along the vertical dimension, which guarantees consecutive memory access.
However, local memory tiling and constant memory for filters don’t work on
Intel MIC.

Compared with cuDNN-v2 @ ICT, CAS

BN cuDNN-v2 MclConv_ Opt

2500

2000

1500 =

N

VYL

Gflops

1000 A

500 -

[} -

NEESEEN NN,
c;.f"-‘ c;,‘i? Gpdb- C:’,::b- Cadb. %thr %be dob ch.f"-‘ pr‘b- d;@ dg@* Q‘;@ D‘a',\@ d‘«"\@

M M
Workload

Performance comparison with cuDNN-v2 on GTX TITAN

1. For the large filter size, our solution performs apparently better than cuDNN-
v2, with up to 33% performance improvement. Because our solution fully
exploits inter-module date reuse.

2. However, our solution performs worse than cuDNN-v2 when the filter size is
small, which is caused by the low inter-module data reuse rate of small filter
size.

Compared with c|BLAS+unfold @ ICT, CAS

B cIBLAS+unflod MclConv Opt

1800
1600 A
1400 A
1200 -
w
e 1000 -
800 A
600 -
400 -
200 -
{] -

Gfl

e S T N~ Y SN *
F PP IFTIIFFTIITO L
CDD C:,":-' cp':.- cpt.- c:,':..- ‘;:"L- c:}f.- c:}ﬂn c‘.f.l C:}'-' %::a- CD’:-? C_';F"‘} %{:} %d'b-

Workload

DU TN

& &

NG

Compared with cIBLAS+unfold on AMD W8000

cIBLAS+unfold follows the same method with the well-known deep learning

library—CAFFE.

1. Our solution performs apparently better than cIBLAS+unfold for large filter
size, with up to 28% performance improvement.

2. However, our solution performs worse when the filter size is small.

Outline @ I€T, CAS

1. Introduction

2. 1D and 2D convolutions

3. Multi-channel 2D convolution
4. Experimental results

7 5. Conclusions

Conclusions and future work @ ICT, CAS

* For 1D and 2D convolutions, register tiling rather than local
memory tiling is critical to achieve good performance. And
different register tiling modes affect the memory access
efficiency.

* Our solution for multi-channel 2D convolution fully exploits
inter-module data reuse, and thus gets good performance for
large filter sizes, up to 33% over cuDNN-v2 and up to 28%
over cIBLAS.

* To improve the performance of multi-channel 2D convolution
for small filter size is our future work.

Q&A @ ICT, CAS

Thank You

Reporter. Shigang Li

Email: shigangli.cs@gmail.com

