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Different convolution operations ICT, CAS

* In the context of image processing, convolution is the scalar
product of the filter weights with the input pixels within a window
surrounding each of the output pixels, such as 1D, 2D and multi-
channel 2D convolutions.
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 They are widely used in image processing, such as Gaussian filter;
today’s Deep Learning, such as Convolution Neural Network.




Many-core processors bring opportunity@ ICT, CAS

e Convolution operations have high computational and
memory access complexity.

 Many-core architectures evolve quickly, which
feature high computational throughput and memory
bandwidth, like NVIDIA and AMD GPUs, and Intel

Xeon Phi.

* This paper aims at providing some insights for
performance optimizations of convolution operations
on these emerging many-core architectures.
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1D and 2D convolutions
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We discuss the optimizations in
the context of OpenCL.:

1. A naive implementation of 1D
and 2D convolutions is each
thread is responsible for one
module and accesses input
pixels from global memory
directly.

2. A common optimization is
utilizing local memory tiling to
cache the input pixels, which
reduces the total global
memory accesses.




Register tiling for 1D and 2D convolutions

In order to exploit the register-level data reuse, register tiling by
coarsening the workload of each thread is used.
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Register tiling affects memory efficiency @ ICT, CAS
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Figure (a) is not coalesced
memory access.

Figure (b) is coalesced
memory access.
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Multi-channel 2D convolution in mini-batch mode @ ICT, CAS

Filtery Filter; Filter;

Chl Ch| Ch|
/_ Chg Chz Chg
¥

Chy Chy Chy

iiiiii

5 ( Ouput 1
EEEE :
Image |FHL,
= Ei:if | Image, |
Chol | : Chy~Chy |
Ch|_ : :
Ch, , |
| |
| !
| !
| !
| |
Images, | Imagesy; |
!
Chy : Chy~Chy
Ch, | |
Ch; Y ————— /

Basically, the serial algorithm
contains total 7 nested for loops.

The outermost 2-level for loops
iterate on Numlmages (i.e. batchsize)
and NumfFilters (number of filters),
respectively.

The inner 5-level for loops, from
outside to inside, iterate on image
Height and Width, Channels,
FilterSize and FilterSize, respectively

A naive method to implement this algorithm in OpenCL is to let each thread

calculate for one pixel of the output images.




Optimization details at thread-group level

ICT, CAS
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NumFlusPerThrd = 2
NumImgsPerThrd = 2
flirlD = get_global size(0)/Width*NumFltrsPerThrd
imglD = get global size(1)/Height*NumlmgsPerThrd

1. Each threads group is
responsible for calculating
NumFlItrsPerThrd*
NumlmgsPerThrd blocks of the
output images, which exploits the
data reuse of the outermost 2-level
for loops, i.e. loop tiling.

2. Each block of input image is
loaded into local memory before
calculating, i.e. local memory tiling,
which exploits inter-module data
reuse.

3. Filters are put in constant
memory to utilize constant cache.




Optimization details at thread level @ ICT, CAS
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Register tiling for Multi-channel 2D convolution@ ICT, CAS
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Performance results of 1D convolution @ ICT, CAS

All of the codes are implemented in OpenCL. We use AMD W38000
(3.23TFlops), GTX TITAN (4.5TFlops) and Intel MIC (2.0496TFlops to do the

experimental analysis.
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1. On AMD W8000 and GTX TITAN, the performance of the naive method
and local memory tiling is almost equal. This is because that the naive
method may benefit from hardware cache.

2. Register tiling greatly improves the performance for both horizontal and
vertical 1D convolutions on AMD W8000 and GTX TITAN.

3. On Intel MIC, local memory tiling performs much worse, as no real
hardware support for local memory.

(c) Vertical 1D convelotion on Intel MIC




2D convolution
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CAS

2D convolution

1. Register tiling, with tiling size of 4*4, usually performs best for AMD

W8000 and GTX TITAN.

2. On Intel MIC, register tiling along the vertical dimension with tiling size
of 4*1, which guarantees consecutive memory access, always

performs best.
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Test scales of convolution layer of CNN @ ICT, CAS

image size | batch size | channels | filters | filter size
Scaleg 128%128 128 3 V6 [3%13
Scale, 128%128 64 8 96 13%13
Scaleo 128%128 64 16 06 13%13
Scales 128128 128 3 96 [1#11
Scale 4 128128 64 8 96 [1#11
Scales, 128%128 64 16 V6 [1#11
Scaleg 1284128 128 96 128 0*9
Scaler 64764 64 96 128 9*9
Scaleg 32%32 64 96 128 9*9
Scaleg 64764 128 128 128 T7#1
Scaleq g 32%32 64 128 128 77
Scaleq 16%16 64 128 128 T*1
Scaleq o 32%32 128 128 384 3%3
Scaleq s 16%16 64 128 384 3%3
Scaleq 4 13713 64 128 384 3%3




Optimizations comparison of
multi-channel 2D convolution ICT, CAS
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Optimizations comparison of convolution layer on AMD W8000

Using constant memory for filters improves the performance greatly
on AMD W8000.




Optimizations comparison of
multi-channel 2D convolution

@ ICT, CAS
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We can see that the best performance is obtained after local
memory tiling. However, the constant memory defined in OpenCL

doesn’t work for NVIDIA GPUs.




Optimizations comparison of
multi-channel 2D convolution ICT, CAS
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Optimizations comparison of convolution layer on Intel MIC

The best performance is obtained when the register tiling is conducted only
along the vertical dimension, which guarantees consecutive memory access.
However, local memory tiling and constant memory for filters don’t work on
Intel MIC.




Compared with cuDNN-v2 @ ICT, CAS
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Performance comparison with cuDNN-v2 on GTX TITAN

1. For the large filter size, our solution performs apparently better than cuDNN-
v2, with up to 33% performance improvement. Because our solution fully
exploits inter-module date reuse.

2. However, our solution performs worse than cuDNN-v2 when the filter size is
small, which is caused by the low inter-module data reuse rate of small filter
size.




Compared with c|BLAS+unfold @ ICT, CAS
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Compared with cIBLAS+unfold on AMD W8000

cIBLAS+unfold follows the same method with the well-known deep learning

library—CAFFE.

1. Our solution performs apparently better than cIBLAS+unfold for large filter
size, with up to 28% performance improvement.

2. However, our solution performs worse when the filter size is small.
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Conclusions and future work @ ICT, CAS

* For 1D and 2D convolutions, register tiling rather than local
memory tiling is critical to achieve good performance. And
different register tiling modes affect the memory access
efficiency.

* Our solution for multi-channel 2D convolution fully exploits
inter-module data reuse, and thus gets good performance for
large filter sizes, up to 33% over cuDNN-v2 and up to 28%
over cIBLAS.

* To improve the performance of multi-channel 2D convolution
for small filter size is our future work.
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