
ICT, CAS

Fast Convolution Operations on Many-Core
Architectures

Reporter: Shigang Li
Affiliation: SKL of Computer Architecture

Institute of Computing Technology, CAS
Email: shigangli.cs@gmail.com

Institute of Computing Technology, Chinese Academy of Sciences
中国科学院计算技术研究所

17th International Conference on High Performance Computing and Communications (HPCC'15)

ICT, CASOutline

1. Introduction

2. 1D and 2D convolutions

3. Multi-channel 2D convolution

4. Experimental results

5. Conclusions

ICT, CASDifferent convolution operations

• In the context of image processing, convolution is the scalar
product of the filter weights with the input pixels within a window
surrounding each of the output pixels, such as 1D, 2D and multi-
channel 2D convolutions.

• They are widely used in image processing, such as Gaussian filter;
today’s Deep Learning, such as Convolution Neural Network.

(d) Multi-channel
2D convolution

ICT, CAS

• Convolution operations have high computational and
memory access complexity.

• Many-core architectures evolve quickly, which
feature high computational throughput and memory
bandwidth, like NVIDIA and AMD GPUs, and Intel
Xeon Phi.

• This paper aims at providing some insights for
performance optimizations of convolution operations
on these emerging many-core architectures.

Many-core processors bring opportunity

ICT, CASOutline

1. Introduction

2. 1D and 2D convolutions

3. Multi-channel 2D convolution

4. Experimental results

5. Conclusions

ICT, CAS1D and 2D convolutions

We discuss the optimizations in
the context of OpenCL:

1. A naïve implementation of 1D
and 2D convolutions is each
thread is responsible for one
module and accesses input
pixels from global memory
directly.

2. A common optimization is
utilizing local memory tiling to
cache the input pixels, which
reduces the total global
memory accesses.

ICT, CASRegister tiling for 1D and 2D convolutions

In order to exploit the register-level data reuse, register tiling by
coarsening the workload of each thread is used.

(a) Register tiling for horizontal 1D convolution
(b) Register tiling for 2D convolution

ICT, CASRegister tiling affects memory efficiency

Figure (a) is not coalesced
memory access.

Figure (b) is coalesced
memory access.

ICT, CASOutline

1. Introduction

2. 1D and 2D convolutions

3. Multi-channel 2D convolution

4. Experimental results

5. Conclusions

ICT, CASMulti-channel 2D convolution in mini-batch mode

Basically, the serial algorithm
contains total 7 nested for loops.

The outermost 2-level for loops
iterate on NumImages (i.e. batchsize)
and NumFilters (number of filters),
respectively.

The inner 5-level for loops, from
outside to inside, iterate on image
Height and Width, Channels,
FilterSize and FilterSize, respectively

A naive method to implement this algorithm in OpenCL is to let each thread
calculate for one pixel of the output images.

ICT, CASOptimization details at thread-group level

1. Each threads group is
responsible for calculating
NumFltrsPerThrd*
NumImgsPerThrd blocks of the
output images, which exploits the
data reuse of the outermost 2-level
for loops, i.e. loop tiling.

2. Each block of input image is
loaded into local memory before
calculating, i.e. local memory tiling,
which exploits inter-module data
reuse.

3. Filters are put in constant
memory to utilize constant cache.

ICT, CASOptimization details at thread level

For each channel, each thread
streams in the pixels of
NumImgsPerThrd images and the
values of NumFltrsPerThrd filters
to registers, and then execute the
convolution on the current channel.

ICT, CASRegister tiling for Multi-channel 2D convolution

Register tiling can also be used to
further exploit the inter-module date
reuse. As we can see in the figure,
the workload of each thread is
coarsened.

ICT, CASOutline

1. Introduction

2. 1D and 2D convolutions

3. Multi-channel 2D convolution

4. Experimental results

5. Conclusions

ICT, CASPerformance results of 1D convolution
All of the codes are implemented in OpenCL. We use AMD W8000
(3.23TFlops), GTX TITAN (4.5TFlops) and Intel MIC (2.0496TFlops to do the
experimental analysis.

Horizontal 1D convolutionVertical 1D convolution

1. On AMD W8000 and GTX TITAN, the performance of the naive method
and local memory tiling is almost equal. This is because that the naïve
method may benefit from hardware cache.

2. Register tiling greatly improves the performance for both horizontal and
vertical 1D convolutions on AMD W8000 and GTX TITAN.

3. On Intel MIC, local memory tiling performs much worse, as no real
hardware support for local memory.

ICT, CAS2D convolution

2D convolution

1. Register tiling, with tiling size of 4*4, usually performs best for AMD
W8000 and GTX TITAN.

2. On Intel MIC, register tiling along the vertical dimension with tiling size
of 4*1, which guarantees consecutive memory access, always
performs best.

ICT, CASTest scales of convolution layer of CNN

ICT, CAS
Optimizations comparison of
multi-channel 2D convolution

Optimizations comparison of convolution layer on AMD W8000

Using constant memory for filters improves the performance greatly
on AMD W8000.

ICT, CAS

Optimizations comparison of convolution layer on GTX TITAN

We can see that the best performance is obtained after local
memory tiling. However, the constant memory defined in OpenCL
doesn’t work for NVIDIA GPUs.

Optimizations comparison of
multi-channel 2D convolution

ICT, CAS

Optimizations comparison of convolution layer on Intel MIC

The best performance is obtained when the register tiling is conducted only
along the vertical dimension, which guarantees consecutive memory access.
However, local memory tiling and constant memory for filters don’t work on
Intel MIC.

Optimizations comparison of
multi-channel 2D convolution

ICT, CASCompared with cuDNN-v2

Performance comparison with cuDNN-v2 on GTX TITAN
1. For the large filter size, our solution performs apparently better than cuDNN-

v2, with up to 33% performance improvement. Because our solution fully
exploits inter-module date reuse.

2. However, our solution performs worse than cuDNN-v2 when the filter size is
small, which is caused by the low inter-module data reuse rate of small filter
size.

ICT, CASCompared with clBLAS+unfold

Compared with clBLAS+unfold on AMD W8000
clBLAS+unfold follows the same method with the well-known deep learning
library—CAFFE.
1. Our solution performs apparently better than clBLAS+unfold for large filter

size, with up to 28% performance improvement.

2. However, our solution performs worse when the filter size is small.

ICT, CASOutline

1. Introduction

2. 1D and 2D convolutions

3. Multi-channel 2D convolution

4. Experimental results

5. Conclusions

ICT, CASConclusions and future work

• For 1D and 2D convolutions, register tiling rather than local
memory tiling is critical to achieve good performance. And
different register tiling modes affect the memory access
efficiency.

• Our solution for multi-channel 2D convolution fully exploits
inter-module data reuse, and thus gets good performance for
large filter sizes, up to 33% over cuDNN-v2 and up to 28%
over clBLAS.

• To improve the performance of multi-channel 2D convolution
for small filter size is our future work.

ICT, CASQ&A

Reporter: Shigang Li
Email: shigangli.cs@gmail.com

Thank You

