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Abstract—It is commonly recognized that the dynamical core
of the atmospheric model based on latitude-longitude mesh has
poor parallel scalability, since it has to perform the costly
polar or high-latitude filtering to dump out the unwanted
modes. To parallelize the algorithm, only two dimensions can
be partitioned even for a 3-dimensional mesh because of the
costly filtering, which hinders the scalability of the algorithm.
In this paper, we develop a highly scalable finite-difference
dynamical core based on the latitude-longitude mesh using a
3D decomposition method, named as AGCM3D. Different from
the traditional methods, our method releases the parallelism
in all three dimensions, namely latitude, longitude, and level.
To replace the costly Fast Fourier Transform (FFT) filtering,
we propose a novel adaptive Gaussian filtering scheme, whose
filtering strength increases as the latitude increases. Compared
with the parallel FFT filtering, the parallel adaptive Gaussian
filtering is far more efficient. In addition, we use the tech-
niques of communication avoiding and message aggregation to
further reduce the communication overhead. Experiments are
conducted on Tianhe-2 supercomputer, and the resolution of
the model is set as 0.5° × 0.5° (50 km). Results show that our
implementation scales up to 32,768 CPU cores in strong scaling
and achieves the maximal simulation speed of 15.6 simulation-
year-per-day (SYPD).

Keywords-3D decomposition; parallel scalability; adaptive
filtering; communication avoiding; message aggregation; atmo-
spheric model

I. INTRODUCTION

Numerical simulation of the global atmospheric circula-
tion is important in climate modeling, and is also a great
challenge in scientific computing. As it is essential for
the atmospheric physics research to understand dynamic
behaviors of the global atmospheric circulation at increas-
ingly fine resolutions, high resolution Atmospheric General
Circulation Models (AGCM) have been developed. Some
recently developed atmospheric models include CAM5 [1]
of the Community Earth System Model (CESM) [2] from
NCAR, ECHAM-5 [3], and IAP AGCM [4]. In order to
enable high-fidelity simulation of realistic problems, the
study of high-performance atmospheric solvers is becoming
an urgent demand.

The dynamical core is one of the most time-consuming
modules of AGCM. It focuses on the dynamic evolution
process of the global atmospheric circulation, which refers
to the formulation of the hydrodynamic equations of the
atmospheric and the numerical algorithms to solve them. In
recent years, a lot of progress has been made on dynamical
cores, including the flexibilities of meshes [5], discretization
methods [4], [6]–[9], and parallel algorithms and optimiza-
tions [10]–[12].

Typically, the dynamical core can be numerically solved
by two types of mesh, including the quasi-uniform polygonal
mesh and the equal-interval latitude-longitude mesh. CAM-
SE [7] is a spectral element dynamical core, which uses the
quasi-uniform polygonal mesh. CAM-SE has good parallel
scalability, since the quasi-uniform polygonal mesh does not
require the costly polar filtering. Fu et al. [11] have migrated
the CAM-SE to the Sunway TaihuLight, and scaled the
performance of the model up to 10 million accelerator cores.
CAM-FV [1], [13] is a finite-volume dynamical core, which
uses the equal-interval latitude-longitude mesh. Similar to
CAM-FV, IAP AGCM [4], [6] is a finite-difference dynami-
cal core, which also uses the equal-interval latitude-longitude
mesh. The dynamical cores based on the latitude-longitude
mesh have the advantages of easily preserving the energy
conservation, dealing with the discontinuous variables, and
coupling with other components. However, both CAM-
FV and IAP AGCM are considered to have poor parallel
scalability, since they have to perform the costly polar or
high-latitude filtering along the longitude dimension to dump
out the unwanted modes when using the latitude-longitude
mesh. Recent results [8], [12], [14] show that the dynamical
cores based on the latitude-longitude mesh can only scale
to thousands of CPU cores. Our work focuses on improving
the parallel scalability for the dynamical cores based on the
latitude-longitude mesh, and scales the performance to tens
of thousands of CPU cores.

For both CAM-FV and IAP AGCM, only two dimensions
(longitude and level) of the mesh are partitioned to execute
on multiple cores because of the costly filtering along the



longitude dimension, which hinders the scalability of the
algorithm. We develop a highly scalable finite-difference
dynamical core based on latitude-longitude mesh using a
3D decomposition method, named as AGCM3D. AGCM3D
releases the parallelism in all three dimensions, namely
latitude, longitude, and level. A novel adaptive Gaussian
filtering scheme is proposed to replace the costly FFT
filtering. We also use the techniques of communication
avoiding and message aggregation to further reduce the
communication overhead. Experiments are conducted on
Tianhe-2 supercomputer [15]. The resolution of the model is
set as 0.5°×0.5° (50 km). On Tianhe-2, our implementation
scales up to 32,768 CPU cores in strong scaling and achieves
the maximal simulation speed of 15.6 simulation-year-per-
day (SYPD).

1) For the finite-difference dynamical core based on the
latitude-longitude mesh, we present a 3D decomposi-
tion method which releases the parallelism in all three
dimensions. Our 3D decomposition method greatly
improves the parallelism and the scalability of the
algorithm.

2) To keep the polar or high-latitude region computa-
tionally stable, we propose a novel adaptive Gaussian
filtering scheme to replace the costly FFT filtering,
whose filtering strength increases as the latitude in-
creases. The parallel adaptive Gaussian filtering sig-
nificantly outperforms the parallel FFT filtering.

3) We further use the techniques of communication
avoiding and message aggregation to reduce the com-
munication overhead involved in the stencil computa-
tion, collective operations, and the adaptive Gaussian
filtering.

In the next section, we discuss the motivation of our work.
Section III discusses the 3D decomposition method and the
adaptive Gaussian filtering scheme. Section IV discusses
the communication optimizations for the 3D decomposi-
tion method. Experimental results and analysis on Tianhe-2
supercomputer are presented in Section V, and Section VI
concludes.

II. MOTIVATION

The baseline we use in this paper is the dynamical core
of the fourth-generation IAP AGCM (IAP AGCM-4) code
developed by Zhang et al. [4]. IAP AGCM-4 uses the finite-
difference method based on the latitude-longitude mesh
to solve the dynamical core. The results show that IAP
AGCM-4 captures the main feature of global climatology
very well [16], and has the similar simulation performance
with the finite-volume dynamical core of the community
atmospheric model (CAM-FV) [13]. Next, we discuss the
continuous form of the governing equations and the two-
dimensional (2D) decomposition scheme in IAP AGCM-4.

A. The Governing Equations

In IAP AGCM-4, the dynamic core revolves around the
solutions of the baroclinic primitive equations. After the
subtraction of the standard stratification and several transfor-
mations [16], the primitive equations are discretized using
the finite difference scheme under the latitude-longitude
mesh, which are written as

[
∂U
∂t

]
x′,y,z

=
[
−α∗L̃(U)− β∗P̃ (λ) + γ∗f∗V

]
x′,y,z[

∂V
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]
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]
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]
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∂
∂t

(
p
′
sa

p0

)]
x,y

=
[
β∗P̃ (W )− κ∗DsaP0

]
x,y

(1)
In Equation (1), the U, V, P, T are the basic prognostic
variables, which represent the zonal wind, meridional wind,
the pressure, and the temperature, respectively. The deriva-
tives ∂U

∂t ,
∂V
∂t ,

∂P
∂t ,

∂φ
∂t are used to calculate the values of

U, V, P, T . According to the time splitting method [16], the
finite difference equations are divided into advection and
adaptation processes. The advection form L̃(ε) is defined as

L̃(ε) =

3∑
m=1

Lm (ε) (2)

and adaptation forms P̃ , Ω̃, δ̃ are defined as
P̃ (λ) = P

(1)
λ + P

(2)
λ

P̃ (Θ) = P
(1)
Θ + P

(2)
Θ

Ω̃ = Ω(1) + Ω
(2)
Θ + Ω

(2)
λ

P̃ (W ) = D (P ) + P (Wσ)k
∆σk

(3)

and
δ̃ = (1− δp)

[
b (1 + δc) + δ · κΦ

P

]
(4)

For the sake of briefness, the longitude, latitude and level
dimensions of the mesh are denoted as X, Y and Z dimen-
sions in this paper, respectively. In the latitude-longitude
mesh system, the central spatial difference solution method
makes all the prognostic variables depend on the data in
the X, Y, and Z dimensions. The values of these variables
are calculated by the multi-point 3D stencil computation.
As shown in Fig.1, the calculation of the variable Ux,y,z
requires the values of Ux±2,y,z, Ux,y±2,z, Ux,y,z±1, which
is typical 3D stencil computation. The calculations for the
other variables are similar.

B. Two-dimensional Decomposition

The two-dimensional (2D) decomposition is used to par-
allelize the dynamical core in IAP AGCM-4 and other
models based on the latitude-longitude mesh, like CAM-
FV [8]. For the polar or high-latitude region in the mesh
space, the mesh points are very small and dense. Thus,
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Figure 1. Stencil computation for the prognostic variables.

both IAP AGCM-4 and CAM-FV use the one-dimensional
FFT filtering along the longitude (X) dimension in the high-
latitude region to dump out the short-wave modes. Thus, the
decomposition of X dimension inevitably causes the problem
of FFT parallelization, which leads to expensive all-to-all
collective communication. To avoid the high communication
overhead, both IAP AGCM-4 and CAM-FV use 2D (Y-Z)
decomposition to parallelize the dynamical core.

However, as the computing resources of supercomputers
grow rapidly, the traditional 2D decomposition method is
no longer effective enough to utilize the the rich com-
puting resources efficiently. This is mainly because only
the parallelism of the Y and Z dimensions is exploited,
while the X dimension, which contains the most number of
mesh points among the three dimensions, is serialized. Thus,
the total degree of parallelism of the 2D decomposition
is not enough, which hinders the parallel scalability. To
the best of our knowledge, the state-of-the-art finite-volume
dynamical core based on the latitude-longitude mesh can
only scale up to 1664 MPI processes (1664 MPI processes
× 4 OpenMP threads = 6656 cores) at the resolution of
0.5°× 0.5° [14]. For IAP AGCM-4, the dynamical core can
only scale up to 1024 MPI processes at the resolution of
0.5° × 0.5° [12], with 64 processes along the Y dimension
and 16 processes along the Z dimension. To fully release
the parallelism of all three dimensions, we propose a novel
3D decomposition method together with an efficient filtering
algorithm. In addition, the overhead of the point-to-point
communication caused by the stencil computation and the
overhead of collective communication along the Z dimension
is also reduced significantly using the 3D decomposition
method.

III. THREE-DIMENSIONAL DECOMPOSITION AND
ADAPTIVE GAUSSIAN FILTERING SCHEME

We present a 3D decomposition method, named as
AGCM3D, to improve the parallel scalability and efficiency
of the finite-difference dynamical core. A novel adaptive
Gaussian filtering scheme is also discussed in this section.
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Figure 2. 2D decomposition vs 3D decomposition.

A. The 3D decomposition method

The 3D decomposition method is implemented by par-
titioning all the three dimensions of the mesh and the
corresponding variable arrays. The mesh points and the
variable arrays are then mapped to a three-dimensional
process topology. Suppose there are M , N , H mesh points
and Px, Py , Pz processes for X, Y and Z dimensions, re-
spectively. Fig.2(a) shows the communication pattern of the
Y-Z decomposition method. The communication domains,
comm Y and comm Z, are used for data communication
in Y and Z dimensions, respectively. For the 2D decompo-
sition, each process is responsible for MNH/Py/Pz mesh
points. A new communication domain comm X along the
X dimension is added in the 3D decomposition, as shown in
Fig.2(b). The parallelism is increased by Px fold and each
process is responsible for MNH/Px/Py/Pz mesh points.

The 3D decomposition not only increases the parallelism,
but also decreases the communication overhead. A de-
tailed comparison between the 2D and 3D decompositions
at 0.5° × 0.5° resolution is shown in Table I. The 3D
decomposition brings extra point-to-point communication
overhead along the X dimension caused by the 3D stencil
computation. In practice, there are 23 variables stored in 2D
(X-Y) arrays and 36 variables stored in 3D arrays required to
be exchanged along the X dimension for each process, and
the total size is (23+36× 361

Py
)× 30

Pz
×sizeof(DOUBLE) bytes.

However, compared with the traditional 2D decomposition,
the volume of point-to-point communications in Y and Z
dimensions caused by the stencil computation are reduced
by Px times. The volume of collective communications
along the Z dimension, which are used to calculate the total
energy, are also reduced by Px times compared with the
2D decomposition. Overall, the communication overhead
is reduced significantly by the 3D decomposition method.
Note that the communication overhead caused by the polar
or high-latitude filtering for the 3D decomposition is not
presented in Table I. We will discuss our novel filtering
scheme in the next section.



Table I
THE COMPARISON BETWEEN 2D AND 3D DECOMPOSITIONS

Comparison items 2D 3D
Horizontal
Resolution 0.5° × 0.5° 0.5° × 0.5°

Number of mesh
points: M ×N ×H

720× 361× 30 720× 361× 30

Processes number of
X dimension 1 Px

Processes number of
Y dimension Py Py

Processes number of
Z dimension Pz Pz

The theoretical
parallelism 361× 30 720× 361× 30

Per core P2P
communication
volume along X

0 (23+36× 30
Pz

)× 361
Py

Per core P2P
communication
volume along Y

(15+18× 30
Pz

)×720 (15+18× 30
Pz

)× 720
Px

Per core P2P
communication
volume along Z

6× 361
Py

× 720 6× 361
Py

× 720
Px

Per core collective
communication
volume along Z

361
Py

× 30
Pz

× 720
0 (if Pz = 1);
361
Py

× 30
Pz

× 720
Px

(if Pz > 1)

B. Adaptive Gaussian filtering scheme
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Figure 3. The latitude mesh lines cluster at the high-latitude region.

As shown in Fig.3, the latitude mesh lines cluster at the
polar region. The physical distance of 9 mesh points at
70° is equal to the physical distance of 13 mesh points at
85°. Commonly, the dynamical cores based on the latitude-
longitude mesh have a severe restriction on the time step.
The time step must be small enough to meet the stability
requirements of the governing equations, which result in
high computational cost [8]. To alleviate the problem caused
by the mesh lines clustering along the X dimension, the
filtering module is applied in the finite-difference dynam-
ical core. Poleward of ±70°, FFT filtering is used on
the tendencies of U, V, P, T to dump out the short-wave
modes in the original IAP AGCM-4 code. The key problem
when implementing the 3D decomposition method is the
parallelization of FFT filtering, since the data transposition
of parallel FFT causes all-to-all communication along the X

dimension. Recall that Px is the number of processes and M
is the number of mesh points along the X dimension. The all-
to-all communication of parallel FFT incurs at least log2 Px
number of communications and total M communication size
for each process [17], which is too high to be amortized
by the benefit of the 3D decomposition. We propose a
new adaptive filtering scheme, which has the same filtering
effect as FFT and ensures the stability and accuracy of
the simulation. Compared with parallel FFT, our adaptive
filtering scheme has a much lower communication overhead.
The implementation of the adaptive filtering scheme is based
on Gaussian filtering, whose impulse response is a Gaussian
function [18]. The one-dimensional Gaussian filtering has
the following form:

Fx,y =

2K∑
n=−2K

F(x+n),y ∗Wx,y;x+n, n = 0,±1, ..±2K (5)

where K is a positive integer. The width of Gaussian filtering
B = 4K + 1. (x, y) are the coordinates of the central mesh
point, and Wx,y;x+n are the weighting coefficients, which
are calculated by

Wx,y;x+n = C0e
− n2

K2 (6)

where C0 is given by

C0 =
1∑2K

n=−2K e
− n2

K2

(7)

Based on Equations (6) and (7), we can easily get

2K∑
n=−2K

Wx,y;x+n = 1 (8)

The value of the central mesh point after filtering is the
sum of the multiplications of the weighting coefficients and
the corresponding mesh point values. From x=0 to 720, 1D
Gaussian filtering Fx,y is sequentially performed on a circle
of mesh points for a specific value of y. As shown in Fig.3,
the 9-points Gaussian filtering value for Fx,y is equal to
the sum of the points from Fx−4,y to Fx+4,y multiplied
by the weighting coefficients from Wx,y;x−4 to Wx,y;x+4,
respectively. If K=1, we can get the weighting coefficients
of 5 points Gaussian filtering. However, this simple Gaussian
filtering method cannot guarantee the computational stability
at the high-latitude or polar region, since the short-wave
modes are not fully dumped out. Poleward of ±70°, we
propose an adaptive Gaussian filtering method to adaptively
adjust the width, the weighting coefficients, and the number
of filtering calls according to the latitude (namely the value
of y). As a result, the filtering strength increases with the
increasing of the latitude.

Method (a) - Adaptive filtering width: Let θ denote
the latitude. The filtering width Bθ is set to 9 at ±70°
latitude, namely B±70° = 9 and K±70° = 2. We use the



filtering width at ±70° latitude as a baseline, and adaptively
increase the width as the latitude increases. Poleward of
±70° (±70° ≤ θ ≤ ±90°), the adaptive filtering width is
described as:

Bθ = 4Kθ + 1,where Kθ = K70°

⌊
sin(90°− 70°)
sin(90°− |θ|)

⌋
(9)

Method (b) - Adaptive weighting coefficients: At ±70°,
the weighting coefficients Wx,y=±70°;x+n can be calculated
by Equation (6) and (7). Poleward of ±70°, we sine-linearly
adjust the coefficients with ±70° as the baseline.

Wx,y;x+n = Wx,y=±70°;x+nLθ+
1

1 + 2K±70°
(1−Lθ) (10)

where Lθ is defined as

Lθ =
sin(90°− 70°)
sin(90°− |θ|)

(11)

Method (c) - Adaptive number of filtering calls: To further
improve filtering strength near the pole, the number of
Gaussian filtering calls is determined by

Nθ =

⌊
sin(90°− δ)
sin(90°− |θ|)

⌋
, 70° ≤ δ ≤ 90° (12)

in which δ is the baseline of the latitude value where the
number of filtering calls begins to adaptively increase.

Table II
ADAPTIVE GAUSSIAN FILTERING SCHEME FOR HIGH-LATITUDE

Filtering scheme Iteration
times Latitude∑4

n=−4 F(x+n),y ∗
Wx,y=±70°;x+n

1 θ = ±70°∑4
n=−4 F(x+n),y ∗Wx,y;x+n 1 ±70° < θ < ±87°∑6
n=−6 F(x+n),y ∗Wx,y;x+n Nθ(δ = 87°) ±87° ≤ θ ≤ ±90°

Our adaptive Gaussian filtering scheme for high-latitude
or polar region is a combination of the above three methods,
as shown in Table II. At±70°, the 9-points Gaussian filtering
is called by one time. From ±71° to ±86°, the 9-point Gaus-
sian filtering with adaptive weighting coefficients (Method
(b)) is called by one time. Poleward of ±87°, the 13-
point Gaussian filtering with adaptive weighting coefficients
(Method (b)) and adaptive number of filtering calls (Method
(c)) is used. As shown in Section V-B, our adaptive filtering
scheme has the same filtering effect as FFT. In addition,
the communication overhead of our scheme is much lower
than the parallel FFT filtering in 3D decomposition, since
only the point-to-point communications with the neighbor
processes are needed by the Gaussian filtering. Although
the Gaussian filtering (so does the point-to-point communi-
cation) is called by multiple times when using Method (c),
we will discuss how to reduce the overhead of this situation
by communication avoiding in the next section.
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(b) Communication of stencil computation in
3D decomposition.

Figure 4. Communication of stencil computation in horizontal direction.
The arrows represent communications.
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Algorithm 1 Message aggregation algorithm
Input: sbuf x: Data buffer to be sent along X; xlen: Length

of sbuf x; rbuf x: Data buffer to be received along X;
myid x: Process ID in the X dimension;comm x: Total
number of Processes along X;PT,UT,VT,TT: Mode
variables.

Output: DPsa,DU,DV,DT: The tendencies of PT,UT,VT,TT.
1: for j← beglat to endlat do
2: sbuf x← PT,Psa(endlon,j)
3: for k← beglev to endlev do
4: sbuf x← UT,VT,TT(endlon,j,k)
5: end for
6: end for
7: mpi isend(sbuf x,xlen,rbuf x,myid x-1,comm x)
8: mpi irecv(rbuf x,xlen,sbuf x,myid x+1,comm x)
9: unpack(rbuf x,PT,Psa,UT,VT,TT) . unpack received

buffer
10: computing tend(DPsa,DU,DV) . compute tendencies
11: for k← beglev to endlev do
12: O2P,D1K,DSK ← 0 . the variables required by DT
13: for i← beglon to endlon do
14: O2P(K)← O2P(K)+Pstar(i,k) . summing Pstar in X
15: D1K(K)← D1K(K)+pv1(i) . summing pv1 in X
16: DSK(K)← DSK(K)+DsaY1(i) . summing DsaY1 in

X
17: end for
18: albuf x ← O2P,D1K,DSK . packing data to send

buffer
19: end for
20: mpi allreduce(albuf x,3*(endlev-

beglev+1),MPI SUM)
21: unpack(albuf x,O2P,D1K,DSK) . unpack received buffer
22: computing tend(DT)

IV. COMMUNICATION OPTIMIZATIONS FOR 3D
DECOMPOSITION

In this section, we discuss the techniques of message
aggregation and communication avoiding used to reduce the
communication overhead of the 3D decomposition method,
involving the point-to-point communication incurred by the
3D stencil computation, the collective communications, and
the point-to-point communication incurred by the adaptive
Gaussian filtering scheme.

A. Message aggregation for Multiple Variables

The communication in the horizontal direction of the 2D
decomposition is illustrated in Fig.4(a), where M is the
number of mesh points in the longitude (X) dimension,
beglat and endlat are starting and ending mesh points in
the latitude (Y) dimension for each process. Due to the
mesh points in the X dimension (1∼M ) are all stored in
the local process memory for the 2D decomposition, the

communication only occurs in the Y dimension. However,
the ghost region, which would be exchanged by point-to-
point communication, includes all the mesh points in the X
dimension. The communication in the horizontal direction
of 3D decomposition is illustrated in Fig.4(b). The total
M mesh points in the X dimension are divided by Px
processes, and the local mesh points in the X dimension
of each process is from beglon to endlon. Compared with
the 2D decomposition, the 3D decomposition decreases the
message size of the communication in the Y dimension by
M
Px

times. However, the 3D decomposition adds point-to-
point communication between the direct neighbor processes
along the X dimension, and periodic border communication
between the first process and the last process along the
X dimension. However, the same communication pattern,
as shown in Fig.4(b), is needed by calculations of mul-
tiple variables, and the messages are very short. Taking
4096 processes (32 × 64 × 2) as an example, the size
for each message in the X or Y dimension is only about
500 bytes. However, only the messages for more than
32 KB can achieve good bandwidth utilization for MPI
over InfiniBand [19]. Therefore, we package all the short
messages with the same destination as a long message,
and send it by one communication to improve bandwidth
utilization. Algorithm 1 shows the details of the message
aggregation algorithm in the tendencies computation along
the X dimension. The ghost data of PT , UT , V T , and TT
along the X dimension are packaged into a communication
buffer sbuf x, as shown in Lines 1-6. sbuf x is sent to
the neighbor processes using the MPI nonblocking point-to-
point communication functions, mpi isend and mpi irecv,
as shown in Lines 7-8.

Collective communication along the X dimension is also
applied in the 3D decomposition, because of the tendency
computation of variable DT requiring all the mesh points
data of the X dimension. A similar approach is applied
on the messages involved in the collective communication.
Variables of O2P , D1K, and DSK are packaged into
a single buffer, albuf x, as shown in Lines 11-19. As
a result, the collective communication (mpi allreduce) is
called only once, as shown in Line 20.

B. Communication avoiding

Due to the adaptive Gaussian filtering used in the 3D
decomposition, the communication volume and the number
of communication calls caused by the parallel filtering
are different at different latitudes. The closer to the polar
region, the more number of communications. The problem
of communication imbalance severely damages the filtering
performance. We use the technique of communication avoid-
ing to minimize the communication cost, especially for the
high-latitude or polar region. Let m indicate the number of
calls for the adaptive filtering at latitude j. The value of m
can be obtained from Equation (12). It is obvious that m is
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Figure 6. Distribution of zonal wind from the Held-Suarez tests.

larger for higher latitude region. Thus, we package the ghost
data required by the m times filtering in advance, and send
them to the related process by one communication. The same
technique is also used in [20] to reduce the communication
overhead for the stencil computation.

Fig.5 compares the communication and computation over-
head between the naive communication strategy and the
communication avoiding. For the process Pi, ib to ie is the
range of the local mesh points in the X dimension, and
processes Pi−1 and Pi+1 are the neighbors of Pi along
the X dimension. For the naive communication strategy
illustrated in Fig.5(a), Pi−1 and Pi+1 send the mesh points
ib − 6 ∼ ib − 1 and ie + 1 ∼ ie + 6 to Pi by point-to-
point communication, respectively. Then, the computation
of one 13-point Gaussian filtering is performed. The above
computation-after-communication procedure will be iterated
m times to complete the adaptive filtering. Thus, the number
of communication is very high for the polar or high-latitude
region. Fig.5(b) illustrate the technique of communication
avoiding used in the adaptive Gaussian filtering. All the data
required by the m times filtering of Pi process, including
the mesh points ib − 6m ∼ ib − 1 of Pi−1 and the mesh
points ie+1 ∼ ib+6m of Pi+1, are packaged together. The
packaged message is sent to Pi by only one communication.
After that, the computation of the 13-point Gaussian filtering
is performed by m times. The technique of communication
avoiding slightly increases the computation overhead, since
the number of mesh points to be filtered (for the first
m−1 times) is larger than the number of local mesh points.
However, this extra computation overhead can be amortized
by the communication overhead reduction.

V. EXPERIMENTAL RESULTS

A. Experiment Configurations

The experiments are conducted on Tianhe-2 supercom-
puter [15] . Each computational node of Tianhe-2 is
equipped with two Intel Xeon E5-2692 processors (total
24 cores) and 64 GB memory. The computational nodes

of Tianhe-2 are connected by TH Express-2 interconnected
network. The communication library is a customized MPI,
called mpi3-dynamic, which complies with the MPI 3.0 [21]
standard. The backend compiler is Intel 15.0 compiler.

We compare our 3D decomposition method, AGCM3D,
with the original Y-Z 2D decomposition method for IAP
AGCM-4 based on the latitude-longitude mesh. To evaluate
the accuracy of the simulation results and the performance,
both our 3D decomposition method and the original 2D
method use the idealized dry-model experiments proposed
by Held and Suarez [22]. The boundary and initial con-
ditions are interpolated from the same input data for both
methods. The horizontal resolution of the atmosphere model
is 0.5° × 0.5°, which is the highest resolution of IAP
AGCM-4. In this resolution, the total number of mesh
points is 7,797,600 (720 × 361 × 30). Table. III shows the
number of processes in each dimension for the original 2D
decomposition method and our 3D decomposition method.
The Y-Z 2D decomposition can use 1024 processes at most,
while our 3D decomposition method can use up to 65,536
processes. Considering that the number of mesh points in the
X and Y dimensions is much larger than the number of levels
in Z dimension, we give priority to assign the processes to
X and Y dimensions first.

Table III
PROCESSES TOPOLOGY OF 2D DECOMPOSITION AND 3D

DECOMPOSITION

Number of processes 2D
(Py × Pz)

3D
(Px×Py×Pz)

128 32× 4 32× 4× 1
256 32× 8 32× 8× 1
512 32× 16 32× 16× 1
1024 64× 16 32× 32× 1
2048 − 32× 64× 1
4096 − 32× 64× 2
8192 − 32× 64× 4

16384 − 32× 64× 8
32768 − 32× 64× 16
65536 − 64× 64× 16



B. The Correctness and the Performance Advantage of the
Adaptive Gaussian Filtering

We verify our adaptive Gaussian filtering scheme through
the Held-Suarez test [22] for the dynamical core of IAP
AGCM-4 for 2D and 3D decompositions. This test is a
unified inspection standard for the dynamical core, in which
the complex physical parameterization are replaced by the
simple expressions. The distribution of zonal wind is one
of the fundamental measures of the climate simulations. We
conduct the Held-Suarez test on the original IAP AGCM-
4 with the FFT filtering and the IAP AGCM-4 with our
adaptive Gaussian filtering scheme. Both codes run for 40
simulation months. Fig.6 illustrates the zonal-mean zonal
wind from the Held-Suarez tests, with FFT filtering on the
left, our adaptive Gaussian filtering in the middle, and their
difference on the right. The results show that both the FFT
filtering and our adaptive Gaussian filtering can produce a
reasonably realistic zonal mean circulation with westerly jet
cores located near 250 hPa over the middle-latitudes of both
hemispheres. Although there is a little difference between
the FFT filtering and our adaptive Gaussian filtering, the
overall patterns of both filtering methods are similar and
reasonable.
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Figure 7. Performance comparison between the parallel FFT filtering and
the parallel adaptive Gaussian filtering.

Fig.7 compares the performance of the parallel FFT
filtering and the parallel adaptive Gaussian filtering used
in the 3D decomposition. Note that the parallel adaptive
Gaussian filtering is optimized by communication avoiding
discussed in Section IV-B. Compared with the parallel FFT
filtering, our parallel adaptive Gaussian filtering improves
the performance by an average of 90x. The one-dimensional
parallel FFT is call many times for filtering the values
of multiple variables at each time step, which involves
many all-to-all collective communications. Thus, the parallel
FFT filtering results in very poor performance. Our parallel
adaptive Gaussian filtering only involves several point-to-
point communications with the neighbor processes, whose
overhead is much lower than the parallel FFT filtering.

C. Communication Optimizations

Message aggregation is used to improve the performance
of point-to-point communication and the collective commu-
nication, as discussed in Section IV-A. Fig.8 compares the
performance of the naive communication and the optimized
communication by message aggregation of the 3D decom-
position. We can see that the optimized communication
improves the performance by 10x on average. The main
reason is that the long messages replace many short mes-
sages using the message aggregation optimization, and thus
the bandwidth utilization is improved and communication
times are reduced. The minimum communication overhead
is 55s at 2048 cores for the optimized communication. As the
number of cores increases from the 2048, the communication
overhead increases gradually. This is because the decompo-
sition along the Z dimension is added for more than 2048
cores, which leads to extra point-to-point communication
and collective communication along the Z dimension.
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D. Scalability and Overall Performance Test

In the strong scaling tests, we set the resolution to be
0.5° × 0.5° and simulate for 2 model months. The number
of processes is increased from 128 to 65,536. The execution
time of both 2D decomposition and 3D decomposition
methods is presented in Fig.9, including the computation
time, the communication time, and the filtering time. To
facilitate comparison, the communication time caused by
the filtering is included in the filtering time for the 3D
decomposition method. The communication time for the 2D
and 3D decomposition methods includes the point-to-point
communication caused by the stencil computation and the
collective communications.

From Fig.9, we can see that the dynamical core using
2D decomposition only scales up to 1024 processes, which
is limited by the parallelism of the Y-Z decomposition.
On the contrary, the 3D decomposition method can scale
the performance up to 32,768 processes. Compared with
the 2D decomposition, the communication time for the 3D
decomposition is reduced by more than 50% on average over
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Figure 9. Strong scaling comparison for IAP AGCM-4 based on 2D and
3D decompositions.

the process number from 128 to 1024. The two main factors
contribute to the reduction of communication time: (1)
the volume of the point-to-point communication is reduced
significantly because of the partition of the X dimension;
(2) the collective communication along the Z dimension is
thoroughly eliminated from 128 processes to 1024 processes,
since we give priority to partition the mesh points in X
and Y dimensions for the 3D decomposition. However, the
overall performance of the 3D decomposition is lower than
the original 2D decomposition for 128 processes, because
of the higher filtering time for the polar region. However,
from 2048 processes to 32,768 processes, the filtering time
is linearly reduced. This is because the number of processes
along the Z dimension increases, and the workload of
filtering for each process decreases proportionally. However,
the execution time on the 65,536 processes is higher than
32,768 processes for 3D decomposition. This is because the
number of processes along the X dimension increases from
32 to 64, which leads to higher communication time for
the adaptive Gaussian filtering. Overall, the experimental
results demonstrate that the 3D decomposition has excellent
scalability. Fig.10 shows the 3D decomposition method
scales from 128 processes to 32,768 processes, and achieves
30.3x speedup and 13% parallel efficiency.
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We also evaluate the simulation speed of dynamical core
for both the 2D and 3D decomposition methods. In the area
of atmospheric simulation, Simulation Year Per computing
Day (SYPD) is a common indicator for measuring the
simulation speed. Fig.11 presents the simulation speed com-
parison between the traditional 2D decomposition method
and the 3D decomposition method. At the resolution of
0.5° × 0.5°, our 3D decomposition method achieves the
maximum rate of 15.6 SYPD on 32,768 cores, while the
traditional 2D decomposition methods can only achieve the
maximum rate of 2.8 SYPD on 1024 cores. Thus, our 3D
decomposition method improves the maximum simulation
speedup by 5.7x compared with the traditional 2D decom-
position.

VI. CONCLUSION

We present AGCM3D, a 3D decomposition method
for the finite-difference dynamical core based on latitude-
longitude mesh. AGCM3D increases the parallelism of
dynamical core significantly by adding decomposition on
the longitude dimension. High-latitude FFT filtering is re-
placed by the new adaptive Gaussian filtering, which has
the same filtering effect as FFT. The adaptive Gaussian
filtering only needs to communicate with neighbor processes
when being parallelized, rather than the collective commu-
nication required by the parallel FFT. Furthermore, using
the techniques of message aggregation and communication
avoiding, the overhead of the point-to-point communication
and the collective communication in the dynamical core
is significantly reduced. Compared with the original IAP
AGCM-4 based on 2D decomposition, AGCM3D achieves
much better parallel scalability and significant performance
improvement on the Tianhe-2 supercomputer.

We foresee that our method will achieve even better
scalability for the higher-resolution simulation (such as
0.25° × 0.25°), since it has higher arithmetic intensity. Be-
sides, our 3D decomposition method and adaptive Gaussian
filtering scheme can also be used to optimize the scalability
of other models, such as CAM-FV. For the future work, we



will couple AGCM3D with the physical process, and utilize
many-core architectures to further speedup the simulation.
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